首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutant gene that increases gibberellin production in brassica   总被引:10,自引:7,他引:3  
A single gene mutant (elongated internode [ein/ein]) with accelerated shoot elongation was identified from a rapid cycling line of Brassica rapa. Relative to normal plants, mutant plants had slightly accelerated floral development, greater stem dry weights, and particularly, increased internode and inflorescence elongation. The application of the triazole plant growth retardant, paclobutrazol, inhibited shoot elongation, returning ein to a more normal phenotype. Conversely, exogenous gibberellin A3 (GA3) can convert normal genotypes to a phenotype resembling ein. The content of endogenous GA1 and GA3 were estimated by gas chromatography-selected ion monitoring using [2H]GA1, as a quantitative internal standard and at day 14 were 1.5- and 12.1-fold higher per stem, respectively, in ein than in normal plants, although GA concentrations were more similar. The endogenous levels of GA20 and GA1, and the rate of GA19 metabolism were simultaneously analyzed at day 7 by feeding [2H2]GA19 and measuring metabolites [2H2]GA20 and [2H2]GA1 and endogenous GA20 and GA1, with [2H5]GA20 and [2H5]GA1 as quantitative internal standards. Levels of GA1 and GA20 were 4.6- and 12.9-fold higher, respectively, and conversions to GA20 and GA1 were 8.3 and 1.3 times faster in ein than normal plants. Confirming the enhanced rate of GA1 biosynthesis in ein, the conversion of [3H]GA20 to [3H]GA1 was also faster in ein than in the normal genotype. Thus, the ein allele results in accelerated GA1 biosynthesis and an elevated content of endogenous GAs, including the dihydroxylated GAs A1 and A3. The enhanced GA production probably underlies the accelerated shoot growth and development, and particularly, the increased shoot elongation.  相似文献   

2.
Mutants of Gibberella fujikuroi with different colony characteristics, morphology and pigmentation were generated by exposure to UV radiation. A mutant, Mor-189, was selected based on its short filament length, relatively high gibberellin A4 (GA4) and gibberellin A3 (GA3) production, as well as its lack of pigmentation. Production of GA4 by Mor-189 was studied using different inorganic and organic nitrogen sources, carbon sources and by maintaining the pH of the fermentation medium using calcium carbonate. Analysis of GA4 and GA3 was done by reversed-phase high-performance liquid chromatography and LC-MS. The mutants of G. fujikuroi produced more GA4 when the pH of the medium was maintained above 5. During shake flask studies, the mutant Mor-189 produced 210 mg l?1 GA4 in media containing wheat gluten as the nitrogen source and glucose as the carbon source. Fed-batch fermentation in a 14 l agitated fermenter was performed to evaluate the applicability of the mutant Mor-189 for the production of GA4. In 7-day fed-batch fermentation, 600 mg l?1 GA4 were obtained in the culture filtrate. The concentration of GA4 and GA3 combined was 713 mg l?1, of which GA4 accounted for 84% of the total gibberellin. These values are substantially higher than those published previously. The present study indicated that, along with maintenance of pH and controlled glucose feeding, the use of wheat gluten as the sole nitrogen source considerably enhances GA4 production by the mutant Mor-189.  相似文献   

3.
《Phytochemistry》1986,25(8):1823-1828
A series of chromatographic and derivatization techniques has been developed for the identification of radiolabelled gibberellin (GA) conjugates. The methods are based on reversed-phase HPLC, gel permeation chromatography, anion-exchange chromatography, enzymatic hydrolysis and transesterification of conjugates, and derivatization of free GAs to methoxycoumaryl esters. The procedures have been used to identify GA4-glucosyl ester, GA4-3-O-glucoside, a GA34-O-glucoside and GA8-2-O-glucoside, in addition to GA1 and GA8, as products of [1,2-3H]GA4 metabolism in shoots of light-grown Phaseolus coccineus seedlings.  相似文献   

4.
[2H, 3H]Gibberellin A4 (GA4) or [2H, 3H] GA9 were applied to the shoot tips of seedlings of elongated internode (ein), a tall mutant of rapid cycling Brassica rapa. Following [2H]GA9 application, [2H]GA51, [2H]GA20 and [2H]GA4 were identified as products by GC-MS, while [2H]GA34 and [2H]GA1 were formed from [2H]GA4. Other isotopically labelled products, including abundant putative conjugates, were also produced, but were not identified. Thus, in B. rapa, GA1 biosynthesis involves the convergence of at least two metabolic pathways; it can be formed via GA4 or GA20, the latter of which can originate from GA9 or from GA19.  相似文献   

5.
Metabolism of tritiated gibberellin a(20) in maize   总被引:6,自引:5,他引:1       下载免费PDF全文
After the application of 2.36 Curies per millimole [2,3-3H]gibberellin A20 (GA20) to 21-day-old maize (Zea mays L., hybrid CM7 × CM49) plants, etiolated maize seedlings, or maturing maize cobs, a number of 3H-metabolites were observed. The principal acidic (pH 3.0), ethyl acetate-soluble metabolite was identified as [3H]GA1 on the basis of co-chromatography with standard [3H]GA1 on SiO2 partition, high resolution isocratic elution reverse phase C18 high performance liquid chromatography and gas-liquid chromatography radiocounting. Two other acidic metabolites were identified similarly as [3H]GA8 and C/D ring-rearranged [3H]GA20, although gas-liquid chromatography radiocounting was not performed on these metabolites. Numerous acidic, butanol-soluble (e.g. ethyl acetate-insoluble) metabolites were observed with retention times on C18 high performance liquid chromatography radiocounting similar to those of authentic glucosyl conjugates of GA1 and GA8, or with retention times where conjugates of GA20 would be expected to elute. Conversion to [3H]GA1 was greatest (23% of methanol extractable radioactivity) in 21-day-old maize plants. In etiolated maize seedlings, the C/D ring-rearranged [3H]GA20-like metabolite was the major acidic product, while conversion to [3H]GA1 was low.  相似文献   

6.
The native hormones from tassels of maize (Zea mays) were re-investigated. The previous identification by GC/SIM of GA1, GA8 and GA29 in normal tassels was confirmed by full GC/MS scans at the correct Kovats retention indices. In tassels of dwarf-1 mutants, GA44,?GA19, GA17, GA20 and the 16,17-dihydro, 7β,16α,17-trihydroxy derivative of ent-kaurenoic acid were identified by GC/MS. Gibberellin A1 was not found in the mutant tassels. [14C]Gibberellin A53 was fed to tassels of the dwarf-5 mutant. In the ethyl acetate-soluble acidic fraction from the feeds, [14C]GA44 was identified by GC/MS; [14C]GA19 and [14C]GA29 were identified by GC/SIM. The GA29 is probably a metabolite of the feeds because the dwarf-5 mutant is known to control the step copalyl pyrophosphate to ent-kaurene in the maize GA-biosynthetic pathway and because GA29 was not identified in a control experiment. The n-butanol fractions obtained from the feeds were shown, by GC/MS, to contain [14C]GA53 after hydrolysis, suggesting that conjugated [14C]GA53 is a major metabolite from GA53 feeds. [17-13C, 17-3H2]Gibberellin A20 was fed to normal, dwarf-1 and dwarf-5 tassels. In each case, analysis of the purified ethyl acetate-soluble acidic extracts by GC/MS led to the identification of [13C]GA29 and unmetabolized [13C]GA20 in which no 13C-isotope dilution was observed.  相似文献   

7.
Cell-free preparations from seeds of Marah macrocarpus L. and Malus domestica L. catalyzed the conversion of gibberellin A9 (GA9) and 2,3-dehydroGA9 to GA7; GA9 was also metabolized to GA4 in a branch pathway. The preparation from Marah seeds also metabolized GA5 to GA3 in high yield; GA6 was a minor product and was not metabolized to GA3. Using substrates stereospecifically labeled with deuterium, it was shown that the metabolism of GA5 to GA3 and of 2,3-dehydroGA9 to GA7 occurs with the loss of the 1β-hydrogen. In cultures of Gibberella fujikuroi, mutant B1-41a, [1β,2β-2H2]GA4, was metabolized to [1,2-2H2]GA3 with the loss of the 1α- and 2α-hydrogens. These results provide further evidence that the biosynthetic origin of GA3 and GA7 in higher plants is different from that in the fungus Gibberella fujikuroi.  相似文献   

8.
The level of gibberellin(GA)-like material in cotyledons of soybean (Glycine max L.) was highest at mid-pod fill—about 10 nanograms GA3 equivalents per gram fresh weight of tissue, assayed in the immersion dwarf rice bioassay. This amount is about 1000-fold less than levels in Pisum and Phaseolus seed, other legume species whose spectrum of endogenous gibberellins (GAs) is well known. The metabolism of [14C]-GA12-7-aldehyde (GA12ald)—the universal GA precursor—by intact, mid-pod-fill, soybean cotyledons and their cell-free extracts was investigated. In 4 hours, extracts converted GA12ald to two products—[14C]GA12 (42% yield) and [14C]GA15 (7%). Within 5 minutes, intact embryos converted GA12ald to [14C]GA12 and [14C]GA15 in 15% yield; 4 hour incubations afforded at least 22 products (96% total yield). The putative [14C]GA12 was identified as a product of [14C]GA12ald metabolism on the basis of co-chromatography with authentic GA12 on a series of reversed and normal phase high pressure liquid chromatography (HPLC) and thin-layer chromatography (TLC) systems, and by a dual feed of the putative [14C]GA12 and authentic [14C]GA12 to cotyledons of both peas and soybeans. The [14C]GA15 was identified as a metabolite of [14C]GA12ald by capillary gas chromatography (GC)-mass-spectrometry-selected ion monitoring, GC-radiocounting, HPLC, and TLC. By adding the [14C] metabolites of [14C]GA12ald to a different and larger extract (about 0.2 kg fresh weight of soybean reproductive tissue) and purifying endogenous substances co-chromatographing with these metabolites, at least two GA-like substances were obtained and one identified as GA7 by GC-mass spectrometry. Since [14C]GA9 was not found as a [14C]metabolite of [14C]GA12ald, soybean embryos might have a pathway for biosynthesis of active, C-19 gibberellins like that of the cucurbits; GA12ald → GA12 → GA15 → GA24 → GA36 → GA4 → GA7.  相似文献   

9.
The rice pathogen Fusarium fujikuroi is known for producing a wide range of secondary metabolites such as pigments, mycotoxins, and a group of phytohormones, the gibberellic acids (GAs). Bioactive forms of these diterpenes are responsible for hyperelongation of rice stems, yellowish chlorotic leaves, and reduced grain formation during the bakanae disease leading to severely decreased crop yields. GAs are also successfully applied in agriculture and horticulture as plant growth regulators to enhance crop yields, fruit size, and to induce earlier flowering. In this study, six F. fujikuroi wild-type and mutant strains differing in GA yields and the spectrum of produced GAs were cultivated in high-quality lab fermenters for optimal temperature and pH control and compared regarding their growth, GA production, and GA gene expression levels. Comparative analysis of the six strains revealed that strain 6314/ΔDESPPT1, holding mutations in two GA biosynthetic genes and an additional deletion of the 4'-phosphopantetheinyl transferase gene PPT1, exhibits the highest total GA amount. Expression studies of two GA biosynthesis genes, CPS/KS and DES, showed a constantly high expression level for both genes under production conditions (nitrogen limitation) in all strains. By cultivating these genetically engineered mutant strains, we were able to produce not only mixtures of different bioactive GAs (GA3, GA4, and GA7) but also pure GA4 or GA7. In addition, we show that the GA yields are not only determined by different production rates, but also by different decomposition rates of the end products GA3, GA4, and GA7 explaining the varying GA levels of genetically almost identical mutant strains.  相似文献   

10.
Eight rapid-cyclingBrassica genotypes differing in height were treated with gibberellins (GAs) by syringe application to the shoot tip. The height of two genotypes ofBrassica napus, Bn5-2 and Bn5-8, andB. rapa mutants,dwarf 1 (dwf1) anddwarf 2 (dwf2), was unaffected by exogenous GA3 at dosages up to 0.1 μg/plant, a level which increased shoot elongation of normal genotypes. Thus, these dwarf mutants are “GA-insensitive.” In contrast to theB. napus dwarfs, twoB. rapa mutants,rosette (ros), anddormant (dor), elongated following GA3 application. The dwarfros was most sensitive, responding to applications as low as 1 ng GA3/plant. Furthermore,ros also responded to GA1 and some of its precursors with decreasing efficacy: GA3>ent-kaurenoic acid ≥GA1>GA20≥GA19=GA44≥GA53. Endogenous GAs were measured by gas chromatography-selected ion monitoring using [2H2]GA internal standards for calibration, from shoots of the GA-insensitive genotypes Bn5-2, Bn5-8 which contained theB. napus mutantdwarf 1, and from a normal genotype Bn5-1. Concentrations of GA1 and GA20 averaged 3.2- and 4.6-fold higher, respectively, and GA19 levels also tended to be higher in the dwarfs than in the normal genotype.  相似文献   

11.
12.
The levels of the biologically active gibberellin (GA), GA1, and of its precursor, GA20, were monitored at several stages during ontogeny in the apical portions of isogenic tall (Le) and dwarf (le) peas (Pisum sativum L.) using deuterated internal standards and gas chromatography-selected ion monitoring. The levels of both GAs were relatively low on emergence and on impending apical arrest. At these early and late stages of development the internodes were substantially shorter than at intermediate stages, but were capable of large responses to applied GA3. Tall plants generally contained 10–18 times more GA1 and possessed internodes 2–3 times longer than dwarf plants. Further, dwarf plants contained 3–5 times more GA20 than tall plants. No conclusive evidence for the presence of GA3 or GA5 could be obtained, even with the aid of [2H2]GA3 and [2H2]GA5 internal standards. If GA3 and GA5 were present in tall plants, their levels were less than 0.5% and 1.4% of the level of GA1, respectively. Comparison of the effects of gene le on GA1 levels and internode length with the effects of ontogeny on these variables shows that the ontogenetic variation in GA1 content was sufficient to account for much of the observed variation in internode length within the wild-type. However, evidence was also obtained for substantial differences in the potential length of different internodes even when saturating levels of exogenous GA3 were present.Abreviations GAn gibberellin An We thank Noel Davies, Omar Hasan, Leigh Johnson, Katherine McPherson and Naomi Lawrence for technical help, Professor L. Mander (Australian National University, Canberra) for deuterated GA standards and the Australian Research Council for financial assistance.  相似文献   

13.
The correlation between gibberellin (GA) metabolism and growth rate was investigated using two Sorghum bicolor inbred lines, Hegari and AT×623, and their heterotic F1 hybrid. Previous studies have demonstrated that this hybrid is taller and has substantially greater shoot dry weights and leaf areas than either parental inbred. [3H]GA20 was applied to the leaf whorl of seedlings and after 24 hours, plants were harvested and separated into roots, shoot cylinders containing the apical meristems, and leaf blades. Chromatographic analyses of metabolites indicated the conversions of [3H]GA20 to [3H]GA1,8 and 29. The conversion of [2H]GA20 to [2H]GA1 was demonstrated by gas chromatography-selected ion monitoring (GC-SIM). Putative glucosyl conjugates of all of the [3H]GAs were also produced and GA8 was identified by GC-SIM following enzymic cleavage of the putative [3H]GA8 glucosyl conjugate fraction. Comparing the genotypes, [3H]GA20 metabolism was more rapid in the shoot cylinders of the hybrid than in the shoot cylinders from inbreds. In the hybrid samples, there was a three-fold increase in the putative conjugate(s) of [3H]GA1 which was the principal metabolite, and increased production of [3H]GA8 and the putative conjugates of [3H]GA29 and [3H]GA8. Conversely, levels of the remaining precursor, [3H]GA20, and its putative conjugate(s) were reduced in the hybrid. The rate of GA20 metabolism was thus positively correlated with growth rate across these sorghum genotypes. This correlation supports a promotive role of GA in the regulation of shoot growth and in the expression of heterosis (hybrid vigor) in sorghum.  相似文献   

14.
[3H]Gibberellin A1 ([3H]GA1)applied to seedlings of dwarf rice (Oryza sativa L. cv. Tanginbozu) was metabolized to GA8. Identification of GA8, was made by gas-liquid radiochromatography using three liquid stationary phases.  相似文献   

15.
The influence of an interstock of the dwarfing cultivar M9 and the nondwarfing cultivar MM115 on the distribution and metabolism of labeled gibberellic acid A4 ([3H]GA4) of high specific radioactivity (5.18 × 1010 becquerel per millimole) applied to the xylem of the rootstock in grafted apple (Malus × domestica Borkh.) trees was compared. Free [3H] GA-like metabolites of [3H]GA4, including putative GA1, GA2, GA3, and GA34, as well as various 3H-putative GA glucosyl conjugates were detected in stem segments from both cultivars. M9 interstocks reduced the total uptake of [3H]GA4 and decreased the proportion of 3H metabolites transported to the shoots and leaves of scions. The M9 interstock tissue and adjacent rootstock and scion tissue retained a much greater amount and a higher proportion of the label than did comparable tissue of the nondwarfing MM115 interstock. In addition, the amount and proportion of free [3H]GAs was higher, and the proportion of putative [3H]GA glucosyl conjugates lower, in M9 interstocks compared to MM115. These effects of the dwarfing interstock on GA distribution and metabolism indicate a significant role for GAs in any satisfactory explanation of the dwarfing mechanism in apple.  相似文献   

16.
Genetic regulation of gibberellin deactivation in Pisum   总被引:2,自引:0,他引:2  
The regulation of gibberellin (GA) deactivation was examined using the sin (slender) mutation in the garden pea (Pisum sativum L.). This mutation blocks the deactivation of GA20, the precursor of the bioactive GA1. Firstly, crosses were made to combine sin with the GA biosynthesis mutations na, lhi and le-3. The combination sin na produced a novel phenotype, with long (‘slender’) basal internodes and extremely short (‘nana’) upper internodes. In contrast, the double mutant sin lhi was phenotypically dwarf. The mutation sin causes an accumulation of GA20 in maturing seeds, and this was unaffected by na, since the na mutation is not expressed in seeds. In contrast, lhi seeds did not accumulate GA20, since lhi imposes an early block on GA biosynthesis. Secondly, the effects of sin on several steps in GA deactivation were investigated. In maturing seeds, the mutation sin blocks two steps in GA20 metabolism, namely, GA20 to GA29, and GA29 to GA29-catabolite. In the vegetative plant, on the other hand, sin blocked the step GA20 to GA29, but not GA29 to GA29-catabolite; the steps GA20 to GA81 and GA20 to GA1 were also not impaired in this mutant. It is clear that the effects of sin, like those of na, are strongly organ-specific. The presence of separate enzymes for the steps GA20 to GA29 and GA29 to GA29-catabolite was suggested by the observation that GA8 inhibited the latter step, but not the former, and by the inability of GA20 and GA29 to inhibit each other's metabolism. It is suggested that the Sin gene may be a regulatory gene controlling the expression of two structural genes involved in GA deactivation.  相似文献   

17.
The properties of the water-soluble metabolites of [3H]gibberellin A1 ([3H]GA1) from lettuce (Lactuca sativa L.) hypocotyls were compared with those of authentic samples of gibberellin (GA) glucosyl esters and ethers. Partitioning against l-butanol at high and low pH was not an efficient method of differentiating between ester and ether conjugates of GA1 or GA3. Extraction into l-butanol at pH 2.5 was, however, useful as a group purification step. Gel-filtration on acrylamide indicated a mean molecular weight of ca. 600 for the polar material and high-voltage electrophoresis separated two compounds (LH 1 and LH 2) with differing charge properties. Both metabolites incorporated 14C from glucose and 3H from GA1. Subsequent enzymatic hydrolysis of LH 1 released material with identical properties to [14C]glucose together with a second uncharacterised component. Feeding with [3H]GA1 methyl ester greatly reduced the formation of LH 1 but not LH 2. The metabolites were provisionally identified as GA1-glucosyl ester (LH 1) and GA1-glucosyl ether (LH 2).Abbreviations GA gibberellin - LH1 GA3-glucosyl ester - LH2 GA1-glucosyl ether - HVE high voltage paper electrophoresis - TLC thin-layer chromatography  相似文献   

18.
A Gibberellin-Deficient Brassica Mutant-rosette   总被引:4,自引:3,他引:1  
A single-gene mutant (rosette [ros/ros]) in which shoot growth and development are inhibited was identified from a rapid cycling line of Brassica rapa (syn campestris). Relative to normal plants, the mutant germinated slowly, had delayed or incomplete floral development, and reduced leaf, petiole, and internode growth. The exogenous application of GA3 by foliar spray or directly to the shoot tip of rosette resulted in rapid flowering, bolting (shoot elongation), and viable seed production. Shoots of rosette contained endogenous levels of total gibberellin (GA)-like substances (`Tan-ginbozu' dwarf rice assay) of about one-tenth of that of the normal rapid-cycling line of B. rapa which consisted almost entirely of a very nonpolar, GA-like substance which yielded GA1 and GA3 upon mild acid hydrolysis. In a normal rapid-cycling B. rapa line, the nonpolar putative GA1 and GA3 conjugates were present, but additionally, free GA1 and GA3 were abundant and identified by gas chromatography-mass spectrometry-selected ion monitoring. The quantities of free GA1 and GA3 in the normal line and in rosette were quantified by GC-MS-SIM using [2H2]GA1 as an internal standard. Fourteen-day-old rosette and normal seedlings contained 5.3 and 23.2 ng GA1 per plant, respectively. At day 21 the rosette plants contained 7.7 and 26.1 nanograms per plant of GA1 and GA3, while normal plants contained 31.1 and 251.5 nanograms per plant, respectively. Thus, normal plants contained from four to ten times higher levels of total GA-like substances, GA1, or GA3, than rosette. The ros allele results in reduced GA level, yielding the rosette phenotype whose delayed germination and flowering, and reduced shoot growth responses indicate a probable role for endogenous GA1 and GA3 in the regulation of these processes in Brassica.  相似文献   

19.
Summary Interconversion of GA4 to GA1 and GA34 occurred within 24 h of application of 1,2-[3H]-GA4 to seedlings of dwarf rice, cv. Tan-ginbozu. Identification was made by direct comparison of the trimethylsilyl ether derivatives of the methyl esters of Silica-gel partition-column fractions on gas-liquid radiochromatography with derivatized GA1 and GA34 standards on three columns: 2% QF-1, 2% SE-30, and 1% XE-60. GA2, an artifact of the purification and chromatography system, may also be formed by the plant. The conversions from GA4 to GA1 and GA34 are single hydroxylations. At least two unidentified radioactive products were also formed by the plant. Interconversions were in the order of 0.3 to 0.8% of applied [3H]-GA4.Abbreviations GA gibberellin - GLC gas-liquid chromatography - GLRC gasliquid radiochromatography - TMSMe trimethylsilyl ether of methyl ester - TLC thin-layer chromatography  相似文献   

20.
Seed effects on gibberellin metabolism in pea pericarp   总被引:1,自引:3,他引:1       下载免费PDF全文
Pea fruit (Pisum sativum L.) is a model system for studying the effect of seeds on fruit growth in order to understand coordination of organ development. The metabolism of 14C-labeled gibberellin A12 (GA12) by pea pericarp was followed using a method that allows access to the seeds while maintaining pericarp growth in situ. Identification and quantitation of GAs in pea pericarp was accomplished by combined gas chromatography-mass spectrometry following extensive purification of the putative GAs. Here we report for the first time that the metabolism of [14C]GA12 to [14C]GA19 and [14C]GA20 occurs in pericarp of seeded pea fruit. Removal of seeds from the pericarp inhibited the conversion of radiolabeled GA19 to GA20 and caused the accumulation of radiolabeled and endogenous GA19. Deseeded pericarp contained no detectable GA20, GA1, or GA8, whereas pericarp with seeds contained endogenous and radiolabeled GA20 and endogenous GA1. These data strongly suggest that seeds are required for normal GA biosynthesis in the pericarp, specifically the conversion of GA19 to GA20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号