首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A correlation between the photovoltaic performance and dynamics of transient photoconductivity is investigated by flash‐photolysis time‐resolved microwave conductivity (FP‐TRMC). This electrode‐less technique offers chances to mitigate barriers for direct, speedy, and robust evaluation of bulk heterojunction (BHJ) film. We examined the blend ratio, process (solvent and thermal annealing), and impurity (a metal complex of Pd) and degradation effects in BHJ films consisting of poly(3‐hexylthiophene) (P3HT) and methanofullerene (PCBM). The minimum charge carrier mobility of 0.22 cm2V?1s?1 was found in P3HT:PCBM = 1:1 film along with 3.26% power conversion efficiency. The revealed good correlation is not only applicable to process optimization, but also expected as a facile screening method to survey the potential of optoelectronic materials.  相似文献   

2.
Ti, V, Cr, Nb, and Mo are found to be effective at increasing the Seebeck coefficient and power factor of n‐type PbSe at temperatures below 600 K. It is found that the higher Seebeck coefficients and power factors are due to higher Hall mobility ≈1000 cm2 V?1s?1 at lower carrier concentration. A larger average ZT value (relevant for applications) can be obtained by an optimization of carrier concentration to ≈1018–1019 cm?3. Even though the highest room temperature power factor ≈3.3 × 10?3 W m?1 K?2 is found in 1 at% Mo‐doped PbSe, the highest ZT is achieved in Cr‐doped PbSe. Combined with the lower thermal conductivity, ZT is improved to ≈0.4 at room temperature and peak ZTs of ≈1.0 are observed at ≈573 K for Pb0.9925Cr0.0075Se and ≈673 K for Pb0.995Cr0.005Se. The calculated device efficiency of Pb0.995Cr0.005Se is as high as ≈12.5% with cold side 300 K and hot side 873 K, higher than those of all the n‐type PbSe materials reported in the literature.  相似文献   

3.
A series of alkyl, alkoxyl, and alkylthio substituted A–π–D–π–A type nonfullerene acceptors (NFAs) IDTCN‐C , IDTCN‐O, and IDTCN‐S are designed and synthesized. The introduction of a lateral side chain at the outer position of the π bridge unit can endow the terminal moiety with a confined planar conformation due to the steric hindrance. Thus, compared with nonsubstituted NFA ( IDTT2F ), these acceptors tend to form favorable face‐on orientation and exhibit strong crystallinity as verified with grazing‐incidence wide‐angle X‐ray scattering measurement. Moreover, the variation of side chain can significantly change the lowest unoccupied molecular orbital (LUMO) energy level of acceptors. As state‐of‐the‐art NFAs, a power conversion efficiency of 13.28% (Voc = 0.91 V, Jsc = 19.96 mA cm?2, and FF = 73.2%) is obtained for the as‐cast devices based on IDTCN‐O , which is among the highest value reported in literature. The excellent photovoltaic performance for IDTCN‐O can be attributed to its slightly up‐shifted LUMO level and more balanced charge transport. This research demonstrates side chain engineering is an effective way to achieve high efficiency organic solar cells.  相似文献   

4.
To increase the efficiency of bulk heterojunction (BHJ) solar cells beyond 15%, 300 nm thick devices with 0.8 fill factor (FF) and external quantum efficiency (EQE) >90% are likely needed. This work demonstrates that numerical device simulators are a powerful tool for investigating charge‐carrier transport in BHJ devices and are useful for rapidly determining what semiconductor pro­perties are needed to reach these performance milestones. The electron and hole mobility in a BHJ must be ≈10?2 cm2 V?1 s?1 in order to attain a 0.8 FF in a 300 nm thick device with the recombination rate constant of poly(3‐hexyl­thiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM). Thus, the hole mobility of donor polymers needs to increase from ≈10?4 to ≈10?2 cm2 V?1 s?1 in order to significantly improve device performance. Furthermore, the charge‐carrier mobility required for high FF is directly proportional to the BHJ recombination rate constant, which demonstrates that decreasing the recombination rate constant could dramatically improve the efficiency of optically thick devices. These findings suggest that researchers should prioritize improving charge‐carrier mobility when synthesizing new materials for BHJ solar cells and highlight that they should aim to understand what factors affect the recombination rate constant in these devices.  相似文献   

5.
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.  相似文献   

6.
A detailed investigation of the impact of molecular weight distribution of a photoactive polymer, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT), on photovoltaic device performance and carrier transport properties is reported. It is found that different batches of as‐received polymers have substantial differences in their molecular weight distribution. As revealed by gel permeation chromatography (GPC), two peaks can generally be observed. One of the peaks corresponds to a high molecular weight component and the other peak corresponds to a low molecular weight component. Photovoltaic devices fabricated with a higher proportion of low molecular weight component have power conversion efficiencies (PCEs) reduced from 5.7% to 2.5%. The corresponding charge carrier mobility at the short‐circuit region is also significantly reduced from 2.7 × 10?5 to 1.6 × 10?8 cm2 V?1 s?1. The carrier transport properties of the polymers at various temperatures are further analyzed by the Gaussian disorder model (GDM). All polymers have similar energetic disorders. However, they appear to have significant differences in carrier hopping distances. This result provides insight into the origin of the molecular weight effect on carrier transport in polymeric semiconducting materials.  相似文献   

7.
The development of non‐fullerene‐based electron acceptors (especially organic molecules with sufficient absorption property within the solar spectrum region) for bulk‐heterojunction (BHJ) organic solar cells (OSCs) is an important issue for the achievement of high photoconversion efficiency. In this contribution, a new class of organic acceptors di‐cyan substituted quinacridone derivatives (DCN‐nCQA, n = 4, 6 and 8) for BHJ solar cells was designed and synthesized. DCN‐nCQA molecules possess facile synthesis, solution processability, visible and near‐IR light absorption and relatively stable characteristics. The DCN‐8CQA molecule exhibited a proper LUMO energy level (–4.1 eV), small bandgap (1.8 eV) and moderate electron mobility (10?4 cm2 V?1 S?1), suggesting that this molecule is an ideal acceptor material for the classical donor material regio‐regular poly (3‐hexylthiophene) (P3HT). A photovoltaic device with a structure of [ITO/PEDOT:PSS/P3HT:DCN‐8CQA/LiF/Al] displayed a power conversion efficiency of 1.57% and a fill factor of 57% under 100 mW cm?2 AM 1.5G simulated solar illumination. The DCN‐nCQA molecules showed remarkable absorption in the region from 650 to 700 nm, where P3HT has a weak absorption promoting overlap with the solar spectrum and potentially improving the performance of the solar cell.  相似文献   

8.
Three heteroleptic ruthenium complexes incorporating new ancillary ligands synthesized by sequential connection of different alkyl functionalities with triazole as a linker are prepared using click chemistry. These sensitizers exhibit low‐energy metal‐to‐ligand charge transfer bands centered at 540 nm with molar extinction coefficients of up to 1.54 × 104 L mol?1 cm?1. The devices using these sensitizers in conjunction with a volatile electrolyte show high photovoltaic conversion efficiencies of 8.7 to 9.9% under standard AM 1.5G sunlight (100 mW cm?2) conditions. Using an ionic liquid electrolyte, the cells show not only a good power‐conversion efficiency of up to 7.1%, but also promising long‐term stability under full sunlight intensity at 60 °C. The difference in the photovoltaic parameters during the ageing process is investigated by employing transient photoelectrical measurements.  相似文献   

9.
Newly developed benzo[1,2‐b:4,5‐b′]dithiophene (BDT) block with 3,4‐ethylenedioxythiophene (EDOT) side chains is first employed to build efficient photovoltaic copolymers. The resulting copolymers, PBDTEDOT‐BT and PBDTEDOTFBT, have a large bandgap more than 1.80 eV, which is attributed to the increased steric hindrance between the BDT and EDOT skeletons. Both copolymers possess the satisfied absorptions, low‐lying highest occupied molecular orbital (HOMO) levels and high crystallinity. Using the fluorination strategy, PBDTEDOT‐FBT exhibits a wider and stronger absorption and a deeper HOMO level than those of PBDTEDOT‐BT. PBDTEDOT‐FBT:[6,6]‐Phenyl C71 butyric acid methyl ester (PC71BM) blend also shows the higher hole mobility and better surface morphology compared with the PBDTEDOTBT:PC71BM blend. Combination of above advantages, PBDTEDOT‐FBT devices exhibit much higher power conversion efficiency (PCE) of 10.11%, with an improved open circuit voltage (Voc) of 0.86 V, short circuit current densities (Jsc) of 16.01 mA cm?2, and fill factor (FF) of 72.6%. This work not only provides a newly efficient candidate of BDT donor block modified with EDOT conjugated side chains, but also achieves high‐performance large bandgap copolymers for polymer solar cells (PSCs) via the synergistic effect of fluorination and side chain engineering strategies.  相似文献   

10.
Reaching device efficiencies that can rival those of polymer‐fullerene Bulk Heterojunction (BHJ) solar cells (>10%) remains challenging with the “All‐Small‐Molecule” (All‐SM) approach, in part because of (i) the morphological limitations that prevail in the absence of polymer and (ii) the difficulty to raise and balance out carrier mobilities across the active layer. In this report, the authors show that blends of the SM donor DR3TBDTT (DR3) and the nonfullerene SM acceptor O‐IDTBR are conducive to “All‐SM” BHJ solar cells with high open‐circuit voltages (VOC) >1.1 V and PCEs as high as 6.4% (avg. 6.1%) when the active layers are subjected to a post‐processing solvent vapor‐annealing (SVA) step with dimethyl disulfide (DMDS). Combining electron energy loss spectroscopy (EELS) analyses and systematic carrier recombination examinations, the authors show that SVA treatments with DMDS play a determining role in improving charge transport and reducing non‐geminate recombination for the DR3:O‐IDTBR system. Correlating the experimental results and device simulations, it is found that substantially higher BHJ solar cell efficiencies of >12% can be achieved if the IQE and carrier mobilities of the active layer are increased to >85% and >10?4 cm2 V?1 s?1, respectively, while suppressing the recombination rate constant k to <10?12 cm3 s?1.  相似文献   

11.
Organic solar cells (OSCs) containing non‐fullerene acceptors have realized high power conversion efficiency (PCE) up to 14%. However, most of these high‐performance non‐fullerene OSCs have been reported with optimal active layer thickness of about 100 nm, mainly due to the low electron mobility (≈10?4–10?5 cm2 V?1 s?1) of non‐fullerene acceptors, which are not suitable for roll‐to‐roll large‐scale processing. In this work, an efficient non‐fullerene OSC based on poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′′′‐diyl)] (PffBT4T‐2OD):EH‐IDTBR (consists of electron‐rich indaceno[1,2‐b:5,6‐b′]dithiophene as the central unit and an electron‐deficient 5,6‐benzo[c][1,2,5]thiadiazole unit flanked with rhodanine as the peripheral group) with thickness‐independent PCE (maintaining a PCE of 9.1% with an active layer thickness of 300 nm) is presented by optimizing device architectures to overcome the space‐charge effects. Optical modeling reveals that most of the incident light is absorbed near the transparent electrode side in thick‐film devices. The transport distance of electrons with lower mobility will therefore be shortened when using inverted device architecture, in which most of the excitons are generated close to the cathode side and therefore substantially reduces the accumulation of electrons in the device. As a result, an efficient thick‐film non‐fullerene OSC is realized. These results provide important guidelines for the development of more efficient thick‐film non‐fullerene OSCs.  相似文献   

12.
Fused ring oligothiophenes and their derivatives, as active organic semiconductors, are widely used in electronic devices. The influence of molecular conjunction length on reorganization energy, electronic coupling and charge mobility of two fused ring oligothiophenes are investigated theoretically. The charge mobility of 2, 5-di(thiophen-2-yl)thieno [3, 2-b]thiophene (T?T2?T) with longer molecular conjunction length is 0.226 cm2V?1s?1, which is nearly 3 times larger than that of 2, 2-bithieno[3, 2-b]thiophene (T2?T2) as 0.085 cm2V?1s?1. The investigation will provide a new perspective to design high mobility organic semiconductors.  相似文献   

13.
“The Same‐Acceptor‐Strategy” (SAS) adopts benzotriazole (BTA)‐based p‐type polymers paired with a new BTA based non‐fullerene acceptor BTA13 to minimize the trade‐off between the open‐circuit voltage (VOC) and short circuit current (JSC). The fluorination and sulfuration are introduced to lower the highest occupied molecular orbitals (HOMO) of the polymers. The fluorinated polymer of J52‐F shows the higher power conversion efficiency (PCE) of 8.36% than the analog polymer of J52, benefited from a good balance between an improved VOC of 1.18 V and a JSC of 11.55 mA cm?2. Further adding alkylthio groups on J52‐F, the resulted polymer, J52‐FS, exhibits the highest VOC of 1.24 V with a decreased energy loss of 0.48 eV, compared with 0.67 eV for J52 and 0.54 eV for J52‐F. However, J52‐FS shows an inferior PCE (3.84%) with a lower JSC of 6.74 mA cm?2, because the small ΔEHOMO between J52‐FS and BTA13 (0.02 eV) gives rise to the inefficient hole transfer and high charge recombination, as well as low carrier mobilities. The results of this study clearly demonstrate that the introduction of different atoms in p‐type polymers is effective to improve the SAS and realize the high (VOC) and PCE.  相似文献   

14.
Unlike universally applicable fullerene derivatives, current nonfullerene electron acceptors are rarely effective with more than one donor polymer in bulk heterojunction (BHJ) solar cells. A novel class of nonfullerene electron acceptors, bis(naphthalene imide)‐3,6‐diphenyl‐trans‐anthrazolines (BNIDPAs), that is applicable and yields efficient photovoltaic devices with multiple donor polymers, including a thiazolothiazole–dithienosilole copolymer (PSEHTT) and benzodithiophene copolymers (PBDTT‐FTTE and PTB7) is reported. Photovoltaic devices composed of the BNIDPA‐butyloctyl (BO) acceptor with PSEHTT, PBDTT‐FTTE, and PTB7, respectively, have power conversion efficiencies of 3.0%–3.1% with high open‐circuit voltages of ≈1.0 V. In contrast, BHJ devices composed of BNIDPA‐DT acceptor with larger 2‐decyltetradecyl chains and the same donor polymers have substantially reduced bulk electron mobility and reduced photovoltaic efficiencies of 1.3%–1.7%, which highlight the critical role of the size of alkyl chains appended onto nonfullerene electron acceptors. The present results provide a rare example of nonfullerene electron acceptors that are capable of pairing with multiple donor polymers to achieve efficient BHJ solar cells.  相似文献   

15.
Fiber‐supercapacitors (FSCs) are promising energy storage devices that can complement or even replace microbatteries in miniaturized portable and wearable electronics. Currently, a major challenge for FSCs is achieving ultrahigh volumetric energy and power densities simultaneously, especially when the charge/discharge rates exceed 1 V s?1. Herein, an Au‐nanoparticle‐doped‐MnOx@CoNi‐alloy@carbon‐nanotube (Au–MnOx@CoNi@CNT) core/shell nanocomposite fiber electrode is designed, aiming to boost its charge/discharge rate by taking advantage of the superconductive CoNi alloy network and the greatly enhanced conductivity of the Au doped MnOx active materials. An all‐solid‐state coaxial asymmetric FSC (CAFSC) prototype device made by wrapping this fiber with a holey graphene paper (HGP) exhibits excellent performance at rates up to 10 V s?1, which is the highest charge rate demonstrated so far for FSCs based on pseudocapacitive materials. Furthermore, our fully packaged CAFSC delivers a volumetric energy density of ≈15.1 mW h cm?3, while simultaneously maintaining a high power density of 7.28 W cm?3 as well as a long cycle life (90% retention after 10 000 cycles). This value is the highest among all reported FSCs, even better than that of a typical 4 V/500 µA h thin‐film lithium battery.  相似文献   

16.
The nanomorphology of the high mobility polymer poly{[N,N′‐bis(2‐octyldodecyl)‐1,4,5,8‐naphthalenedicarboximide‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} P(NDI2OD‐T2) in thin films is explored as a function of different annealing conditions and correlated to optical and electrical properties. While nanofibrils with face‐on orientation in form I are obtained directly after spin‐coating and annealing below the melt transition temperature, clear evidence of lamellar structures is found after melt‐annealing followed by slow cooling to room temperature. Interestingly these structural changes are accompanied by distinct changes in the absorption patterns. Electron diffraction measurements further show clear transitions towards predominant edge‐on oriented chains in form II upon melt‐annealing. Large‐scale alignment with dichroic ratios up to 10 and improved order is achieved by high temperature rubbing and subsequent post‐rubbing annealing. These highly oriented morphologies allow anisotropic in‐plane charge transport to be probed with top‐gate transistors parallel and perpendicular to the polymer chain direction. Mobilities up to 0.1 cm2 V‐1 s‐1 are observed parallel to the polymer chain, which is up to 10 times higher than those perpendicular to the polymer chain.  相似文献   

17.
Significant optical absorption in the blue–green spectral range, high intralayer carrier mobility, and band alignment suitable for water splitting suggest tin disulfide (SnS2) as a candidate material for photo‐electrochemical applications. In this work, vertically aligned SnS2 nanoflakes are synthesized directly on transparent conductive substrates using a scalable close space sublimation (CSS) method. Detailed characterization by time‐resolved terahertz and time‐resolved photoluminescence spectroscopies reveals a high intrinsic carrier mobility of 330 cm2 V?1 s?1 and photoexcited carrier lifetimes of 1.3 ns in these nanoflakes, resulting in a long vertical diffusion length of ≈1 µm. The highest photo‐electrochemical performance is achieved by growing SnS2 nanoflakes with heights that are between this diffusion length and the optical absorption depth of ≈2 µm, which balances the competing requirements of charge transport and light absorption. Moreover, the unique stepped morphology of these CSS‐grown nanoflakes improves photocurrent by exposing multiple edge sites in every nanoflake. The optimized vertical SnS2 nanoflake photoanodes produce record photocurrents of 4.5 mA cm?2 for oxidation of a sulfite hole scavenger and 2.6 mA cm?2 for water oxidation without any hole scavenger, both at 1.23 VRHE in neutral electrolyte under simulated AM1.5G sunlight, and stable photocurrents for iodide oxidation in acidic electrolyte.  相似文献   

18.
It is a great challenge to simultaneously improve the two tangled parameters, open circuit voltage (Voc) and short circuit current density (Jsc) for organic solar cells (OSCs). Herein, such a challenge is addressed by a synergistic approach using fine‐tuning molecular backbone and morphology control simultaneously by a simple yet effective side chain modulation on the backbone of an acceptor–donor–acceptor (A–D–A)‐type acceptor. With this, two terthieno[3,2‐b]thiophene (3TT) based A–D–A‐type acceptors, 3TT‐OCIC with backbone modulation and 3TT‐CIC without such modification, are designed and synthesized. Compared with the controlled molecule 3TT‐CIC, 3TT‐OCIC shows power conversion efficiency (PCE) of 13.13% with improved Voc of 0.69 V and Jsc of 27.58 mA cm?2, corresponding to PCE of 12.15% with Voc of 0.65 V and Jsc of 27.04 mA cm?2 for 3TT‐CIC–based device. Furthermore, with effective near infrared absorption, 3TT‐OCIC is used as the rear subcell acceptor in a tandem device and gave an excellent PCE of 15.72%.  相似文献   

19.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

20.
Thin film solar cells made from earth‐abundant, non‐toxic materials are needed to replace the current technology that uses Cu(In,Ga)(S,Se)2 and CdTe, which contain scarce and toxic elements. One promising candidate absorber material is tin monosulfide (SnS). In this report, pure, stoichiometric, single‐phase SnS films were obtained by atomic layer deposition (ALD) using the reaction of bis(N,N′‐diisopropylacetamidinato)tin(II) [Sn(MeC(N‐iPr)2)2] and hydrogen sulfide (H2S) at low temperatures (100 to 200 °C). The direct optical band gap of SnS is around 1.3 eV and strong optical absorption (α > 104 cm?1) is observed throughout the visible and near‐infrared spectral regions. The films are p‐type semiconductors with carrier concentration on the order of 1016 cm?3 and hole mobility 0.82–15.3 cm2V?1s?1 in the plane of the films. The electrical properties are anisotropic, with three times higher mobility in the direction through the film, compared to the in‐plane direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号