共查询到20条相似文献,搜索用时 0 毫秒
1.
Animals exhibit diverse dispersal strategies, including sex‐biased dispersal, a phenomenon common in vertebrates. Dispersal influences the genetic structure of populations as well as geographic variation in phenotypic traits. Patterns of spatial genetic structure and geographic variation may vary between the sexes whenever males and females exhibit different dispersal behaviors. Here, we examine dispersal, spatial genetic structure, and spatial acoustic structure in Rufous‐and‐white Wrens, a year‐round resident tropical bird. Both sexes sing in this species, allowing us to compare acoustic variation between males and females and examine the relationship between dispersal and song sharing for both sexes. Using a long‐term dataset collected over an 11‐year period, we used banding data and molecular genetic analyses to quantify natal and breeding dispersal distance in Rufous‐and‐white Wrens. We quantified song sharing and examined whether sharing varied with dispersal distance, for both males and females. Observational data and molecular genetic analyses indicate that dispersal is female‐biased. Females dispersed farther from natal territories than males, and more often between breeding territories than males. Furthermore, females showed no significant spatial genetic structure, consistent with expectations, whereas males showed significant spatial genetic structure. Overall, natal dispersal appears to have more influence than breeding dispersal on spatial genetic structure and spatial acoustic structure, given that the majority of breeding dispersal events resulted in individuals moving only short distances. Song sharing between pairs of same‐sex animals decreases with the distance between their territories for both males and females, although males exhibited significantly greater song sharing than females. Lastly, we measured the relationship between natal dispersal distance and song sharing. We found that sons shared fewer songs with their fathers the farther they dispersed from their natal territories, but that song sharing between daughters and mothers was not significantly correlated with natal dispersal distance. Our results reveal cultural differences between the sexes, suggesting a relationship between culture and sex‐biased dispersal. 相似文献
2.
John H. Chau Cline Born Melodie A. McGeoch Dana Bergstrom Justine Shaw Aleks Terauds Mario Mairal Johannes J. Le Roux Bettine Jansen van Vuuren 《Molecular ecology》2019,28(14):3291-3305
The distribution of genetic variation in species is governed by factors that act differently across spatial scales. To tease apart the contribution of different processes, especially at intermediate spatial scales, it is useful to study simple ecosystems such as those on sub‐Antarctic oceanic islands. In this study, we characterize spatial genetic patterns of two keystone plant species, Azorella selago on sub‐Antarctic Marion Island and Azorella macquariensis on sub‐Antarctic Macquarie Island. Although both islands experience a similar climate and have a similar vegetation structure, they differ significantly in topography and geological history. We genotyped six microsatellites for 1,149 individuals from 123 sites across Marion Island and 372 individuals from 42 sites across Macquarie Island. We tested for spatial patterns in genetic diversity, including correlation with elevation and vegetation type, and clines in different directional bearings. We also examined genetic differentiation within islands, isolation‐by‐distance with and without accounting for direction, and signals of demographic change. Marion Island was found to have a distinct northwest–southeast divide, with lower genetic diversity and more sites with a signal of population expansion in the northwest. We attribute this to asymmetric seed dispersal by the dominant northwesterly winds, and to population persistence in a southwestern refugium during the Last Glacial Maximum. No apparent spatial pattern, but greater genetic diversity and differentiation between sites, was found on Macquarie Island, which may be due to the narrow length of the island in the direction of the dominant winds and longer population persistence permitted by the lack of extensive glaciation on the island. Together, our results clearly illustrate the implications of island shape and geography, and the importance of direction‐dependent drivers, in shaping spatial genetic structure. 相似文献
3.
Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds. 相似文献
4.
Joseph D. Busch Peter M. Waser J. Andrew DeWoody 《Evolution; international journal of organic evolution》2009,63(9):2302-2314
Natal philopatry is expected to limit gene flow and give rise to fine-scale spatial genetic structure (SGS). The banner-tailed kangaroo rat ( Dipodomys spectabilis ) is unusual among mammals because both sexes are philopatric. This provides an opportunity to study patterns of local SGS faced by philopatric and dispersing animals. We evaluated SGS using spatial genetic autocorrelation in two D. spectabilis populations (Rucker and Portal) over a 14-year temporal series that covered low, medium, and high population densities. Significantly positive autocorrelation values exist up to 800 m at Rucker and 400 m at Portal. Density was negatively associated with SGS (low >medium >high), and suggests that increases in density are accompanied by greater spatial overlap of kin clusters. With regard to sex-bias, we find a small but significant increase in the SGS level of males over females, which matches the greater dispersal distances observed in females. We observed variation in SGS over the ecological time scale of this study, indicating genetic structure is temporally labile. Our study is the first temporal exploration of the influence of density and sex on spatial genetic autocorrelation in vertebrate populations. Because few organisms maintain discreet kin clusters, we predict that density will be negatively associated with SGS in other species. 相似文献
5.
Esteban Botero‐Delgadillo Verónica Quirici Yanina Poblete Élfego Cuevas Sylvia Kuhn Alexander Girg Kim Teltscher Elie Poulin Bart Kempenaers Rodrigo A. Vásquez 《Ecology and evolution》2017,7(20):8363-8378
The distribution of suitable habitat influences natal and breeding dispersal at small spatial scales, resulting in strong microgeographic genetic structure. Although environmental variation can promote interpopulation differences in dispersal behavior and local spatial patterns, the effects of distinct ecological conditions on within‐species variation in dispersal strategies and in fine‐scale genetic structure remain poorly understood. We studied local dispersal and fine‐scale genetic structure in the thorn‐tailed rayadito (Aphrastura spinicauda), a South American bird that breeds along a wide latitudinal gradient. We combine capture‐mark‐recapture data from eight breeding seasons and molecular genetics to compare two peripheral populations with contrasting environments in Chile: Navarino Island, a continuous and low density habitat, and Fray Jorge National Park, a fragmented, densely populated and more stressful environment. Natal dispersal showed no sex bias in Navarino but was female‐biased in the more dense population in Fray Jorge. In the latter, male movements were restricted, and some birds seemed to skip breeding in their first year, suggesting habitat saturation. Breeding dispersal was limited in both populations, with males being more philopatric than females. Spatial genetic autocorrelation analyzes using 13 polymorphic microsatellite loci confirmed the observed dispersal patterns: a fine‐scale genetic structure was only detectable for males in Fray Jorge for distances up to 450 m. Furthermore, two‐dimensional autocorrelation analyzes and estimates of genetic relatedness indicated that related males tended to be spatially clustered in this population. Our study shows evidence for context‐dependent variation in natal dispersal and corresponding local genetic structure in peripheral populations of this bird. It seems likely that the costs of dispersal are higher in the fragmented and higher density environment in Fray Jorge, particularly for males. The observed differences in microgeographic genetic structure for rayaditos might reflect the genetic consequences of population‐specific responses to contrasting environmental pressures near the range limits of its distribution. 相似文献
6.
Some studies have found that dispersal rates and distances increase with density, indicating that density‐dependent dispersal likely affects spatial genetic structure. In an 11‐year mark–recapture study on a passerine, the dark‐eyed junco, we tested whether density affected dispersal distance and/or fine‐scale spatial genetic structure. Contrary to expectations, we found no effect of predispersal density on dispersal distance or the proportion of locally produced juveniles returning to the population from which they hatched. However, even though density did not affect dispersal distance or natal return rates, we found that density still did affect spatial genetic structure. We found significant positive spatial genetic structure at low densities of (postdispersal) adults but not at high densities. In years with high postdispersal (adult) densities that also had high predispersal (juvenile) densities in the previous year, we found negative spatial genetic structure, indicating high levels of dispersal. We found that density also affected fitness of recruits, and fitness of immigrants, potentially linking these population parameters with the spatial genetic structure detected. Immigrants and recruits rarely nested in low postdispersal density years. In contrast, in years with high postdispersal density, recruits were common and immigrants had equal success to local birds, so novel genotypes diluted the gene pool and effectively eliminated positive spatial genetic structure. In relation to fine‐scale spatial genetic structure, fitness of immigrants and new recruits is poorly understood compared to dispersal movements, but we conclude that it can have implications for the spatial distribution of genotypes in populations. 相似文献
7.
Frank Pennekamp Katherine A. Mitchell Alexis Chaine Nicolas Schtickzelle 《Evolution; international journal of organic evolution》2014,68(8):2319-2330
Dispersal and phenotypic plasticity are two main ways for species to deal with rapid changes of their environments. Understanding how genotypes (G), environments (E), and their interaction (genotype and environment; G × E) each affects dispersal propensity is therefore instrumental for predicting the ecological and evolutionary responses of species under global change. Here we used an actively dispersing ciliate to quantify the contributions of G, E, and G × E on dispersal propensity, exposing 44 different genotypes to three different environmental contexts (densities in isogenotype populations). Moreover, we assessed the condition dependence of dispersal, that is, whether dispersal is related to morphological, physiological, or behavioral traits. We found that genotypes showed marked differences in dispersal propensity and that dispersal is plastically adjusted to density, with the overall trend for genotypes to exhibit negative density‐dependent dispersal. A small, but significant G × E interaction indicates genetic variability in plasticity and therefore some potential for dispersal plasticity to evolve. We also show evidence consistent with condition‐dependent dispersal suggesting that genotypes also vary in how individual condition is linked to dispersal under different environmental contexts thereby generating complex dispersal behavior due to only three variables (genes, environment, and individual condition). 相似文献
8.
Following a steep decline, White Stork Ciconia ciconia populations in Germany are currently increasing, allowing us to examine potential density‐dependent effects on breeding dispersal. Our data suggest that the proportion of breeding dispersers has increased over time, indicating a density‐dependent component in nest‐site fidelity that may be linked to increased competition. 相似文献
9.
Kyle S. Van Houtan Devon L. Francke Sarah Alessi T. Todd Jones Summer L. Martin Lauren Kurpita Cheryl S. King Robin W. Baird 《Ecology and evolution》2016,6(8):2378-2389
High seas oceanic ecosystems are considered important habitat for juvenile sea turtles, yet much remains cryptic about this important life‐history period. Recent progress on climate and fishery impacts in these so‐called lost years is promising, but the developmental biogeography of hawksbill sea turtles (Eretmochelys imbricata) has not been widely described in the Pacific Ocean. This knowledge gap limits the effectiveness of conservation management for this globally endangered species. We address this with 30 years of stranding observations, 20 years of bycatch records, and recent simulations of natal dispersal trajectories in the Hawaiian Archipelago. We synthesize the analyses of these data in the context of direct empirical observations, anecdotal sightings, and historical commercial harvests from the insular Pacific. We find hawksbills 0–4 years of age, measuring 8–34 cm straight carapace length, are found predominantly in the coastal pelagic waters of Hawaii. Unlike other species, we find no direct evidence of a prolonged presence in oceanic habitats, yet satellite tracks of passive drifters (simulating natal dispersal) and our small sample sizes suggest that an oceanic phase for hawksbills cannot be dismissed. Importantly, despite over 600 million hooks deployed and nearly 6000 turtle interactions, longline fisheries have never recorded a single hawksbill take. We address whether the patterns we observe are due to population size and gear selectivity. Although most sea turtle species demonstrate clear patterns of oceanic development, hawksbills in the North Pacific may by contrast occupy a variety of ecosystems including coastal pelagic waters and shallow reefs in remote atolls. This focuses attention on hazards in these ecosystems – entanglement and ingestion of marine debris – and perhaps away from longline bycatch and decadal climate regimes that affect sea turtle development in oceanic regions. 相似文献
10.
Animal movement is an important process connecting habitats in heterogeneous landscapes, and can play a key role in population persistence. Laboratory swim trials were conducted to determine and compare the dispersal capabilities of two native Australian fish, mountain galaxias (Galaxias olidus, Family Galaxiidae) and southern pygmy perch (Nannoperca australis, Family Nannopercidae) that maintain populations in hydrologically variable and intermittently flowing streams in south‐eastern Australia. These experiments showed that G. olidus had significantly greater swimming endurance under a range of flow velocities. Concurrent field surveys were used to establish whether swimming abilities observed in laboratory studies were consistent with patterns of inferred movement from distribution and abundance patterns observed in the field. Data collected at multiple sites from headwater to lowland reaches along multiple streams revealed substantial temporal changes in the distribution of young‐of‐year (0+) G. olidus, with spawning occurring at upland sites in winter, followed by downstream larval migration and subsequent upstream movement in late spring. Observed spatial and temporal patterns in G. olidus abundances were consistent with a source‐sink population structure, which may be disrupted by prolonged cease‐to‐flow periods during drought years. In contrast, results for N. australis suggested limited dispersal, with restricted local populations that persist at sites with permanent surface water. These field and laboratory findings complement our understanding of the spatial population structure of these two species in intermittent streams, and highlight the importance of understanding the role of dispersal in species conservation and habitat restoration. 相似文献
11.
扩散是生物个体之间相互远离的单线性运动,是生物的基本特征之一,对种群的分布、动态及遗传结构等方面均有重要影响.扩散有出生扩散和繁殖扩散等主要形式.动物发生扩散的主要原因包括:避免近亲繁殖、减少竞争、改变繁殖地点等.近年来,扩散已经成为鸟类学研究的前沿领域.评述了鸟类扩散行为的性别差异、体质对于扩散的影响,阐述了扩散的基本过程及栖息地选择、长距离扩散等内容,同时介绍了环志标记、无线电遥测、分子生物学等研究鸟类扩散的主要方法.展望了鸟类扩散研究的发展趋势,认为新技术和新方法的应用将成为扩散生态学家关注的重要问题,未来研究将更加重视对鸟类扩散理论问题的探讨,而对鸟类扩散行为的研究成果也会更广泛地应用于濒危物种及其栖息地的保护工作中. 相似文献
12.
Host-parasite interactions have been hypothesized to affect the evolution of dispersal by providing a possibility for hosts to escape debilitating parasites, and by influencing the level of local adaptation. We used a comparative approach to investigate the relationship between a component of host immune function (which reflects the evolutionary history of parasite-induced natural selection) and dispersal in birds. We used a sample of 46 species of birds for which we had obtained field estimates of T-cell response for nestlings, mainly from our own field studies in Denmark and Spain. Bird species with longer natal, but not with longer breeding dispersal distances had a stronger mean T-cell-mediated immune response in nestlings than species with short dispersal distances. That was also the case when controlling for the potentially confounding effect of migration from breeding to wintering area, which is known from previous studies to be positively associated with dispersal distance. These relationships held even when controlling for similarity among species because of common ancestry. Avian hosts with a larger number of different breeding habitats had weaker mean T-cell-mediated immune responses than habitat specialists. This relationship held even when controlling for similarity among species because of common ancestry. Therefore, T-cell-mediated immunity is an important predictor of evolutionary changes in dispersal ability among common European birds. 相似文献
13.
Dispersal, defined as a linear spreading movement of individuals away from others of the population is a fundamental characteristic of organisms in nature. Dispersal is a central concept in ecological, behavioral and evolutionary studies, driven by different forces such as avoidance of inbreeding depression, density-dependent competition and the need to change breeding locations. By effective dispersal, organisms can enlarge their geographic range and adjust the dynamic, sex ratio and genetic compositions of a population. Birds are one of the groups that are studied intensively by human beings. Due to their diurnal habits, diverse life history strategies and complex movement, birds are also ideal models for the study of dispersal behaviors. Certain topics of avian dispersal including sex-biased, asymmetric dispersal caused by differences in body conditions, dispersal processes, habitat selection and long distance dispersal are discussed here. Bird-ringing or marking, radio-telemetry and genetic markers are useful tools widely applied in dispersal studies. There are three major challenges regarding theoretical study and methodology research of dispersal: (1) improvement in research methodology is needed, (2) more in-depth theoretical research is necessary, and (3) application of theoretical research into the conservation efforts for threatened birds and the management of their habitats should be carried out immediately. __________ Translated from Acta Ecologica Sinica, 2008, 28(4): 1354–1365 [译自: 生态学报] 相似文献
14.
15.
Hardy OJ Maggia L Bandou E Breyne P Caron H Chevallier MH Doligez A Dutech C Kremer A Latouche-Hallé C Troispoux V Veron V Degen B 《Molecular ecology》2006,15(2):559-571
The extent of gene dispersal is a fundamental factor of the population and evolutionary dynamics of tropical tree species, but directly monitoring seed and pollen movement is a difficult task. However, indirect estimates of historical gene dispersal can be obtained from the fine-scale spatial genetic structure of populations at drift-dispersal equilibrium. Using an approach that is based on the slope of the regression of pairwise kinship coefficients on spatial distance and estimates of the effective population density, we compare indirect gene dispersal estimates of sympatric populations of 10 tropical tree species. We re-analysed 26 data sets consisting of mapped allozyme, SSR (simple sequence repeat), RAPD (random amplified polymorphic DNA) or AFLP (amplified fragment length polymorphism) genotypes from two rainforest sites in French Guiana. Gene dispersal estimates were obtained for at least one marker in each species, although the estimation procedure failed under insufficient marker polymorphism, limited sample size, or inappropriate sampling area. Estimates generally suffered low precision and were affected by assumptions regarding the effective population density. Averaging estimates over data sets, the extent of gene dispersal ranged from 150 m to 1200 m according to species. Smaller gene dispersal estimates were obtained in species with heavy diaspores, which are presumably not well dispersed, and in populations with high local adult density. We suggest that limited seed dispersal could indirectly limit effective pollen dispersal by creating higher local tree densities, thereby increasing the positive correlation between pollen and seed dispersal distances. We discuss the potential and limitations of our indirect estimation procedure and suggest guidelines for future studies. 相似文献
16.
D. Philip Whitfield Alan H. Fielding David Anderson Stuart Benn Robin Reid Ruth Tingay Ewan Weston 《Ibis》2024,166(1):146-155
Natal dispersal distance (NDD) is critical in understanding and defining populations and their conservation. It is defined as the linear distance between the natal location and first reproductive (‘effective NDD’) or potential reproductive (‘gross NDD’) location. It is a measure of gene flow and the functional connectivity across generations between individuals breeding in the same or different geographies. NDD is difficult to record in large raptors. GPS-satellite telemetry has facilitated its recording. Previous Scottish studies showed that gross and effective NDD were apparently equivalent, and an algorithm based on telemetric data could identify the territory settlement timing and location of birds originally tagged as nestlings. We analysed natal dispersal data from 39 Golden Eagles GPS-tagged in Scotland to estimate NDD. Raw median estimates were 29.8 km for males (n = 22) and 58.6 km for females (n = 17), 38.1 km averaged across sexes. Males had significantly shorter NDD, as theoretically predicted. Our NDD estimates were shorter but not grossly dissimilar to those from the USA, where sex differences in NDD had not been confirmed. Respective sample sizes may underly the latter contrast in confirmation. We also showed that in the absence of data from sexed birds, NDD estimates can be different. Natal dispersal duration was not related to NDD, suggesting that time to prospect a territory opportunity was not associated with the selected territory's distance from the natal site. The previous status of the subsequent settled territory (occupied or vacant) was also not related to NDD. We conclude that sex differences in NDD are important in application to population demography and conservation. Although we found no support for two other potential drivers of NDD (natal dispersal duration and previous territory status), identifying additional influences on NDD is in its infancy in large raptors and deserves more study. 相似文献
17.
Many symbioses have costs and benefits to their hosts that vary with the environmental context, which itself may vary in space. The same symbiont may be a mutualist in one location and a parasite in another. Such spatially conditional mutualisms pose a dilemma for hosts, who might evolve (higher or lower) horizontal or vertical transmission to increase their chances of being infected only where the symbiont is beneficial. To determine how transmission in hosts might evolve, we modeled transmission evolution where the symbiont had a spatially conditional effect on either host lifespan or fecundity. We found that over ecological time, symbionts that affected lifespan but not fecundity led to high frequencies of infected hosts in areas where the symbiont was beneficial and low frequencies elsewhere. In response, hosts evolved increased horizontal transmission only when the symbiont affected lifespan. We also modeled transmission evolution in symbionts, which evolved high horizontal and vertical transmission, indicating a possible host–symbiont conflict over transmission mode. Our results suggest an eco‐evolutionary feedback where the component of host fitness affected by a conditionally mutualistic symbiont in turn determines its distribution in the population, and, through this, the transmission mode that evolves. 相似文献
18.
Dispersal, defined as a linear spreading move-ment of individuals away from others of the population is a fundamental characteristic of organisms in nature. Dispersal is a central concept in ecological, behavioral and evolutionary studies, driven by different forces such as avoidance of inbreeding depression, density-dependent competition and the need to change breeding locations. By effective dispersal, organisms can enlarge their geo-graphic range and adjust the dynamic, sex ratio and gen-etic compositions of a population. Birds are one of the groups that are studied intensively by human beings. Due to their diurnal habits, diverse life history strategies and complex movement, birds are also ideal models for the study of dispersal behaviors. Certain topics of avian dispersal including sex-biased, asymmetric dispersal caused by differences in body conditions, dispersal pro-cesses, habitat selection and long distance dispersal are discussed here. Bird-ringing or marking, radio-telemetry and genetic markers are useful tools widely applied in dispersal studies. There are three major challenges regard-ing theoretical study and methodology research of dis-persal: (1) improvement in research methodology is needed, (2) more in-depth theoretical research is neces-sary, and (3) application of theoretical research into the conservation efforts for threatened birds and the manage-ment of their habitats should be carried out immediately. 相似文献
19.
Paul E. Bergeron Steven J. Clary Rodrigo J. Mercader 《Journal of Applied Entomology》2019,143(6):693-698
Local adaptation can lead to significant differences in host use that may influence population growth and spread. Here, we test the potential for adaptation of one behavioural component (host acceptance) to lead to cross‐adaptation for a separate behavioural component (dispersal propensity) using the cowpea seed beetle, Callosobruchus maculatus. C. maculatus originating from the same source population were subjected to selection for host use by rearing them for over 40 generations on either the preferred host of the ancestral population, Vigna radiata, or a marginal host for the ancestral population, Cicer arietinum. Host acceptance was then assayed using four choice and no‐choice oviposition assays including a low‐quality host, Lens culinaris, a marginal host, C. arietinum, and two high‐quality hosts, V. radiata and V. unguiculata. Dispersal was assayed in interconnected arenas containing one of three different hosts: V. radiata, V. unguiculata or C. arietinum. As expected, differences in host acceptance were present, in this case consisting of greater acceptance of the lower quality hosts in the C. arietinum population, but no significant differences in host preference hierarchy. Dispersal propensity in the C. arietinum population was significantly lower than in the V. radiata population, despite the absence of any difference in selection pressures for dispersal. Furthermore, significant differences in dispersal propensity in arenas containing different hosts were present in the V. radiata population, but not in the C. arietinum population. Results highlight the need to consider local adaptation when developing management recommendations, even for behaviours for which selection pressures are not directly apparent. 相似文献