首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ergosta-5,23-dien-3β-ol and ergosta-7,23-dien-3β-ol were identified for the first time in maize etiolated coleoptiles. They represent more than 11 % of the total 4-desmethyl sterol fraction. It is suggested that they could play some role in the biosynthesis of 24-methyl sterols of this material.  相似文献   

2.
The (β/α)8-barrel is one of the most common folds functioning as enzymes. The emergence of two (β/α)8-barrel enzymes involved in histidine biosynthesis, each of which has a twofold symmetric structure, has been proposed to be a consequence of tandem duplication and fusion of a (β/α)4-half-barrel. However, little evidence has been found for the existence of an ancestral half-barrel in the evolution of other (β/α)8-barrel proteins. In order to detect remnants of an ancestral half-barrel in the (β/α)8-barrel structure of Escherichia coli N-(5′-phosphoribosyl)anthranilate isomerase, we engineered three potential half-barrel units, (β/α)1-4, (β/α)3-6, and (β/α)5-8. Among these three arrangements, only (β/α)3-6 is stable; it exists in equilibrium between monomeric and dimeric forms. Thus, the central segment of N-(5′-phosphoribosyl)anthranilate isomerase from E. coli can serve as a half-barrel precursor. A tandem duplication of (β/α)3-6 yielded predominantly monomeric structures that were quite stable. This result exemplified that the structural characteristics of noncovalently assembled half-barrels could be improved by duplication and fusion. Moreover, our results may provide information regarding the local structural units that encompass interactions important for the early folding events of this ubiquitous protein conformation.  相似文献   

3.
The major sterol in the two unicellular marine algae Cryptomonas sp. and Isochrysis galbana has been identified as (24S)-24-methylcholesta-5,22-dien-3β-ol (epibrassicasterol). The production of a sterol with the 24α-configuration by cryptophycean and prymnesiophycean algae and by diatoms contrasts with the situation in many other algae which produce sterols with the 24β-configuration.  相似文献   

4.
5.
The C1 domains of classical and novel PKCs mediate their diacylglycerol-dependent translocation. Using fluorescence resonance energy transfer, we studied the contribution of different negatively charged phospholipids and diacylglycerols to membrane binding. Three different C1B domains of PKCs were studied (the classical γ, and the novel δ and ?), together with different lipid mixtures containing three types of acidic phospholipids and three types of activating diacylglycerols. The results show that C1Bγ and C1B? exhibit a higher affinity to bind to vesicles containing 1-palmitoyl-2-oleoyl-sn-phosphatidic acid, 1-palmitoyl-2-oleoyl-sn-phoshatidylserine, or 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol, with C1B? being the most relevant case because its affinity for POPA-containing vesicles increased by almost two orders of magnitude. When the effect of the diacylglycerol fatty acid composition on membrane binding was studied, the C1B? domain showed the highest binding affinity to membranes containing 1-stearoyl-oleoyl-sn-glycerol or 1,2-sn-dioleoylglycerol with POPA as the acidic phospholipid. Of the three diacylglycerols used in this study, 1,2-sn-dioleoylglycerol and 1-stearoyl-oleoyl-sn-glycerol showed the highest affinities for each isoenzyme, whereas 1,2-sn-dipalmitoylglycerol; showed the lowest affinity. DSC experiments showed this to be a consequence of the nonfluid conditions of 1,2-sn-dipalmitoylglycerol;-containing systems.  相似文献   

6.
[6-3H1] (24S)-24-Ethylcholesta-5,22,25-trien-3β-ol added to the growth medium of a culture of Trebouxia sp. 213/3 was efficiently taken-up by the cells and converted into (24R)-24-ethylcholesta-5,22-dien-3β-ol (poriferasterol) which is one of the major sterols of this alga. A cell-free homogenate was obtained from Trebouxia which catalysed the NADPH-dependent reduction of [6-3H1] (24S)-24-ethylcholesta-5,22,25-trien-3β-ol to yield poriferasterol. The δ25-sterol reductase was found to be mainly localized in the microsomal fraction of the homogenate.  相似文献   

7.
Aβ peptides aggregate to form insoluble and neurotoxic fibrils associated with Alzheimer’s disease. Inhibition of the aggregation has been the subject of numerous studies. Here we describe a novel, substoichiometric inhibitor of Aβ1-40 fibrillization as a tandem dimeric construct consisting of Aβ40-1 (reverse sequence) linked to Aβ1-40 via an eight residue glycine linker. At molar ratios of the tandem peptide to Aβ1-40 of 1:10 to 1:25 inhibition of fibrillization, as measured by ThioflavinT, was observed. We postulate that the tandem construct binds to a fibrillar intermediate but the reverse sequence delays or prevents further monomer association.  相似文献   

8.
Reaction of Cu(NO3)2 · 3H2O, N,N,N′,N′-tetramethyl-ethylenediamine (L) and sodium dicyanamide (Nadca) in aqueous medium yields a complex the {[Cu2L2(μ-1,5-dca)2(dca)2]}n complex, 1. Single crystal X-ray analysis reveals that complex 1 has a 1D infinite chain structure in which copper(II) ions are bridged by single dicyanamide anions in an end-to-end fashion. The coordination environment around copper(II) is distorted square pyramidal. Two among the four coordination sites of the basal plane are occupied by the nitrogen atoms of the diamine and two remaining sites are occupied by the terminal nitrogen atom of a bridging and of a monodentate dca anions. The fifth coordination site (apical) is occupied by a nitrogen atom from a bridging dca anion of an adjacent CuL(dca)2 moiety, yielding the [Cu2L2(μ-1,5-dca)2(dca)2] dinuclear unit. Dimeric units are connected to each other by single μ-1,5-dicyanamido group to form infinite 1D chains which propagate parallel to the crystallographic c-axis. The variable temperature magnetic susceptibility measurements evidenced weakly antiferromagnetic interactions (J = −0.26 cm−1) in {[Cu2L2(μ-1,5-dca)2(dca)2]}n, 1.  相似文献   

9.
A new molecular loop composed of two quadruply bonded Mo2(DAniF)2 units (DAniF=N,N-di-p-anisylformamidinate) linked by two chiral allene-1,3-dicarboxylate anions has been prepared from the reaction of [cis-Mo2(DAniF)2(MeCN)4](BF4)2 with the bis(tetraethylammonium) salt of allene-1,3-dicarboxylic acid. This compound, [cis-Mo2(DAniF)2]2(O2C-CHCCH-CO2)2 (1), has been characterized by X-ray crystallography and by 1H NMR and UV-Vis spectroscopy. The molecule possesses a center of inversion and hence is meso. There is only weak electronic coupling between the two Mo2 4+ units as revealed by electrochemical measurements.  相似文献   

10.
Glycoside hydrolase family GH85 is a family of endo-β-N-acetylglucosaminidases that is responsible for the hydrolysis of β-1,4 linkage in the N,N-diacetylchitobiose core of N-linked glycans. The endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) is of particular interest, given its increasing use for the chemoenzymatic synthesis of bespoke N-glycans using N-glycan oxazolines as glycosyl donors. The E173Q variant of Endo-A is especially attractive for synthesis, as it is hydrolytically impaired but still able to catalyze N-glycan synthesis by transglycosylation using activated oxazoline donors. Here we present the three-dimensional structure of the A. protophormiae Endo-A E173Q variant, solved by multiple-wavelength anomalous scattering methods and refined at 1.8 Å resolution. The structure reveals that GH85 enzymes display a trimodular architecture in which a (β/α)8 catalytic domain occurs with two ancillary β-sheet modules. The active centre is fully consistent with the known neighboring-group catalytic mechanism in which E173 acts as the catalytic acid/base for reaction via an oxazoline intermediate. Of note is the presence of an asparagine in the active centre, in a position likely to interact with the acetyl NH group that, in all other known families of glycosidase using this mechanism, is an aspartate or glutamate residue. The substrate-binding surface reveals an open topography, consistent with the ability to accept a large range of glycoprotein substrates and the ability to transglycosylate other acceptors. The three-dimensional structure of this important biocatalyst reveals that residues implicated in the enhancement of transglycosylation and synthetic capacity are proximal to the active centre, where they may act to favor binding of acceptor substrates.  相似文献   

11.
The synthesis of Bi[N(SiMe3)2]3 from BiCl3 and KN(SiMe3)2 generates an unusual amido bismuth imide by-product, {[(Me3Si)2N]Bi[μ-N(SiMe3)]}2, evidently formed via SiN bond cleavage. X-ray diffraction shows that the complex contains a planar Bi2N2 ring with tetrahedral bismuth and trigonal planar imido nitrogen atoms.  相似文献   

12.
The basal plate of the scales of Amia calva is composed of regular double twisted plywood, as in Latimeria and Dipnoan scales. However, the progressive rotation of the fibrils direction is left-handed in Amia and right-handed in the ‘Sarcopterygians’. So, the similarity between these peculiar plywoods is probably the result of convergence. The basal plate of Amia scales is incompletely mineralized. There are numerous calcified ovoid corpuscles which look very like the Mandl's corpuscles of Teleost scales. The mineralization probably progresses essentially by the fusion of these corpuscles, as in Teleost scales, and would be inotropic rather than spheritic.  相似文献   

13.
The Pt2 (II) isomeric terminal hydrides [(CO)(H)Pt(μ-PBu2)2Pt(PBu2H)]CF3SO3 (1a), and [(CO)Pt(μ-PBu2)2Pt(PBu2H)(H)]CF3SO3 (1b), react rapidly with 1 atm of carbon monoxide to give the same mixture of two isomers of the Pt2 (I) dicarbonyl [Pt2(μ-PBu2)(CO)2(PBu2H)2]CF3SO3 (3-Pt); the solid state structure of the isomer bearing the carbonyl ligands pseudo-trans to the bridging phosphide was solved by X-ray diffraction. A remarkable difference was instead found between the reactivity of 1a and 1b towards carbon disulfide or isoprene. In both cases 1b reacts slowly to afford [Pt2(μ-PBu2)(μ,η22-CS2)(PBu2H)2]CF3SO3 (4-Pt), and [Pt2(μ-PBu2)(μ,η22-isoprene) (PBu2H)2]CF3SO3 (6-Pt), respectively. In the same experimental conditions, 1a is totally inert. A common mechanism, proceeding through the preassociation of the incoming ligand followed by the PH bond formation between one of the bridging P atoms and the hydride ligand, has been suggested for these reactions.  相似文献   

14.
Saponification of the bis(carbamic acid ester) 1,3-C6H4(CMe2NHCO2Me)2 (1), made by the addition of methanol to commercial 1,3-C6H4(CMe2NCO)2, yielded the meta-phenylene-based bis(tertiary carbinamine) 1,3-C6H4(CMe2NH2)2 (2). Dinuclear [{(η4-1,5-C8H12)RhCl}2{μ-1,3-C6H4(CMe2NH2)2}] (3) resulted from the action of 2 on [{(η4-1,5-C8H12)Rh(μ-Cl)}2] in toluene. Combination of 2 with PdCl2 or K2[PdCl4] gave the dipalladium macrocycle trans,trans-[{μ-1,3-C6H4(CMe2NH2)2}2(PdCl2)2] (4) along with cyclometalated [{2,6-C6H3(CMe2NH2)2NC1N′}PdCl] (5). Substitution of PEt3 for the labile chlorido ligand of 5 afforded [{2,6-C6H3(CMe2NH2)2NC1, κN′}Pd(PEt3)]Cl (6). The crystal structures of the following compounds were determined: bis(carbamic acid ester) 1, ligand 2 as its bis(trifluoroacetate) salt [1,3-C6H4(CMe2NH3)2](O2CCF3)2, 2 · (HAcf)2, complexes 3 and 6, as well as 1,3-C6H4(CMe2OH)2 (the diol analogue of 2).  相似文献   

15.
Resistance to inhibitors of cholinesterase 8A (Ric-8A) is a prominent non-receptor GEF and a chaperone of G protein α-subunits (Gα). Recent studies shed light on the structure of Ric-8A, providing insights into the mechanisms underlying its interaction with Gα. Ric-8A is composed of a core armadillo-like domain and a flexible C-terminal tail. Interaction of a conserved concave surface of its core domain with the Gα C-terminus appears to mediate formation of the initial Ric-8A/GαGDP intermediate, followed by the formation of a stable nucleotide-free complex. The latter event involves a large-scale dislocation of the Gα α5-helix that produces an extensive primary interface and disrupts the nucleotide-binding site of Gα. The distal portion of the C-terminal tail of Ric-8A forms a smaller secondary interface, which ostensibly binds the switch II region of Gα, facilitating binding of GTP. The two-site Gα interface of Ric-8A is distinct from that of GPCRs, and might have evolved to support the chaperone function of Ric-8A.  相似文献   

16.
The U4+ cyclooctatetraenyl complex, [(C5Me5)(C8H8)U]2(μ-C8H8), 1, reacts with two equiv of 4,4′-dimethyl-2,2′-bipyridine (Me2bipy) and 2 equiv of 2,2′-bipyridine (bipy) to form 2 equiv of (η5-C5Me5)(η8-C8H8)U(Me2bipy-κ2N,N′) and (η5-C5Me5)(η8-C8H8)U(bipy-κ2N,N′), respectively. X-ray crystallography, infrared spectroscopy, and density functional theory calculations indicate that the products are best described as U4+ complexes of bipyridyl radical anions. Hence, only one of the (C8H8)2− ligands in 1 acts as a reductant and delivers 2 electrons per equiv of 1. Since the reduction potentials of uncomplexed (C8H8)2−, Me2bipy, and bipy are −1.86, −2.15, and −2.10 V vs SCE, respectively, it is likely that prior coordination of the bipyridine reagents enhances the electron transfer.  相似文献   

17.
α/β-Galactoside α2,3-sialyltransferase produced by Photobacterium phosphoreum JT-ISH-467 is a unique enzyme that catalyzes the transfer of N-acetylneuraminic acid residue from cytidine monophosphate N-acetylneuraminic acid to acceptor carbohydrate groups. The enzyme recognizes both mono- and di-saccharides as acceptor substrates, and can transfer Neu5Ac to both α-galactoside and β-galactoside, efficiently. To elucidate the structural basis for the broad acceptor substrate specificity, we determined the crystal structure of the α2,3-sialyltransferase in complex with CMP. The overall structure belongs to the glycosyltransferase-B structural group. We could model a reasonable active conformation structure based on the crystal structure. The predicted structure suggested that the broad substrate specificity could be attributed to the wider entrance of the acceptor substrate binding site.  相似文献   

18.
19.
The pyrrole analog of prostacyclin, 6,9-deepoxy-6,9-N-phenylimino-Δ6,8-prostaglandin I1 was synthetized from PGF2α methyl ester. This pyrroloprostacyclin (U-60, 257) and its methyl ester (U-56, 467) have been shown to inhibit leukotriene C/D biosynthesis and antagonized leukotriene C/D contractions in vitro. Antigen induced bronchopulmonary changes in monkeys and guinea pigs are inhibited by U-60, 257 in vivo.  相似文献   

20.
It is well established that integrin α4β1 binds to the vascular cell adhesion molecule (VCAM) and fibronectin and plays an important role in signal transduction. Blocking the binding of VCAM to α4β1 is thought to be a way of controlling a number of disease processes. To better understand how various inhibitors might block the interaction of VCAM and fibronectin with α4β1, we began constructing a structure model for the integrin α4β1 complex. As the first step, we have built a homology model of the β1 subunit based on the I domain of the integrin CD11B subunit. The model, including a bound Mg2+ ion, was optimized through a specially designed relaxation scheme involving restrained minimization and dynamics steps. The native ligand VCAM and two highly active small molecules (TBC772 and TBC3486) shown to inhibit binding of CS-1 and VCAM to α4β1 were docked into the active site of the refined model. Results from the binding analysis fit well with a pharmacophore model that was independently derived from active analog studies. A critical examination of residues in the binding site and analysis of docked ligands that are both potent and selective led to the proposal of a mechanism for β1/β7 ligand binding selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号