首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Blomstrand  L Kager  O Lantto 《Life sciences》1973,13(8):1131-1141
In order to elucidate the mechanisms involved in the acute ethanol-induced liver triglyceride accumulation, the oxidation, esterification and β-keto acid formation have been studied in rat and human liver slices after incubation with albumin bound, long chain fatty acids (palmitic. oleic and linoleic acids).The addition of alcohol to rat and human liver slices depressed the formation of 14CO2 from palmitic acid-1-14C, oleic acid-1-14C and linoleic acid-1-14C. The esterification to triglycerides and phospholipids was increased and the formation of β-keto acids was decreased by alcohol.Addition of 4-methylpyrazole, an inhibitor of liver alcohol dehydrogenase, almost prevented the alcohol effect on the lipid metabolism of the liver slices. The oxidation of alcohol is thus obligatory for the decreased β-oxidation of fatty acids, the increased esterification and for the decreased formation of β-keto acids. The results suggest that ethanol oxidation inhibits β-oxidation of fatty acids and that this primary effect leads to accumulation of liver triglycerides by increased esterification of plasma free fatty acids.  相似文献   

2.
The total lipid and free fatty acid contents of Isotricha intestinalis, Entodinium simplex, and the rumen bacterial flora of the respective protozoa were determined. Warburg manometric data showed that the sodium salts of tributyrin, oleic, and acetic acids stimulated gas production in I. intestinalis, whereas tributyrin was stimulatory with E. simplex and less active with oleic and acetic acids. Rumen bacteria provided fatty acids produced lower manometric gaseous increases when compared with the protozoa. Volatile fatty acids were produced by I. intestinalis and rumen bacteria with tributyrin, but not with tripalmitin. Sodium oleate gave little volatile fatty acid response with I. intestinalis or rumen bacteria. Washed suspensions of I. intestinalis and rumen bacteria concentrated C14-labeled oleic, palmitic, stearic, and linoleic acids within the cells during short incubation periods. Autoradiographs demonstrated the conversion of C14-labeled oleic, palmitic, stearic, linoleic, and acetic acids in the rumen protozoa and bacterial cells.  相似文献   

3.
Most of the nonstarch lipids in brown rice (Oryza sativa) of three rices differing in amylose content were contributed by bran, germ, polish and subaleurone layer. Nonstarch lipids consisted of 82–91% neutral lipids (of which 73–82% were triglycerides), 7–10% phospholipids and 2–8% glycolipids. Linoleic, oleic and palmitic acids were the major fatty acids. Nonwaxy (24 and 29% amylose) milled rice had proportionally more starch lipids and less nonstarch lipids than waxy (2% amylose) milled rice. Starch lipids were mainly lysophosphatidyl choline, lysophosphatidyl ethanolamine and free fatty acids. The major fatty acids were palmitic and linoleic acids, followed by oleic acid.  相似文献   

4.
Washed suspensions of the ruminal ciliates, Isotricha prostoma and Entodinium simplex, concentrated C14-labeled oleic, palmitic, stearic, and linoleic acids within the cells during short incubation periods. Radioautographs demonstrated that oleic acid-1-C14 was hydrogenated to stearic acid by I. prostoma, and Warburg manometric data showed that the sodium salts of oleic, valeric, caproic, and acetic acids, and methyl myristate, methyl laurate, and the triglyceride tributyrin stimulated fermentation of I. prostoma. The total lipid and free fatty acid contents of I. prostoma were determined.  相似文献   

5.
Fatty acid composition of lipids isolated from spores of different fern groups show differences between the families whereas species variations within the families are smaller. As in seed fats, the spore lipids are mainly triglycerides, with the exception of Osmunda where free fatty acids accumulate. The spore lipids contain as major components oleic, linoleic, and palmitic acid although those of the sporophylls contain C-20 polyunsaturated acids.  相似文献   

6.
The plasma-borne long-chain free fatty acids (FFA) enter skeletal muscle cells. Upon entering they are oxidized or esterified and a fraction remains free (non-esterified). The data on free fatty acids in skeletal muscles remain highly controversial. Furthermore, the composition of individual fatty acids in various lipid fractions including free fatty acids, monoglyceride and diglyceride in muscles has not been characterized. Also data on the composition of fatty acids esterified into muscle triglycerides and phospholipids are incomplete. The present study was undertaken to examine a composition of fatty acids in lipid fractions of different skeletal muscle types. For this purpose, samples of the rat soleus, red and white portions of gastrocnemius were excised, trimmed of visible fat and fascias and immediately frozen in liquid nitrogen. Samples were then pulverized and, lipids were extracted and fractionated by thin-layer chromatography. Individual long-chain fatty acids in different fractions were identified, characterized and quantitated by gas-liquid chromatography. FFA composition in the plasma was also determined. The total FFA content in the soleus, red and white gastrocnemius was 69.1 ± 10.8, 49.0 ± 13.6 and 22.7 ± 8.6 nmol/g, respectively. Palmitic and oleic acids were the major fatty acids in the muscles FFA fraction. Monoglyceride fraction of each muscle contained palmitic, stearic and linoleic acid as the major fatty acids, Diglyceride fraction contained mostly palmitic and oleic acid whereas triglyceride fraction mostly palmitic and linoleic acid.. The fraction of phospholipids was composed mostly of palmitic and linoleic acid but contained also considerable percentage of archidonic acid. Total plasma FFA/muscle FFA ratio depended on a muscle type and was: 2.4 in the soleus, 3.5 in the red and 7.4 in the white gastrocnemius. This assured transport of FFA to the myocytes. However, there were great differences in the ratio between particular FFA within the same muscle as well between the muscles. It indicates that individual FFA are either selectively transported from the plasma to the muscles or selectively used within the myocytes or both.  相似文献   

7.
The degree of unsaturation of fatty acids was higher in Chlorella vulgaris 11h cells grown with air (low-CO2 cells) than in the cells grown with air enriched with 2% CO2 (high-CO2 cells). The change in the ratio of linoleic acid to α-linolenic acid was particularly significant. This change of the ratio was observed in four major lipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidylcholine, and phosphatidylethanolamine). The relative contents of lipid classes were essentially the same both in high-CO2 and low-CO2 cells. After high-CO2 cells were transferred to low CO2 condition, total amount of fatty acids remained constant but the relative content of α-linolenic acid increased during a 6-hour lag phase in growth with concomitant decreases in linoleic and oleic acids. When low-CO2 cells were transferred to high CO2 condition, total amount of fatty acids and relative content of oleic acid increased significantly. The amount of α-linolenic acid remained almost constant, while the amounts of palmitic, oleic, and linoleic acids increased. Similar, but smaller, changes in fatty acid compositions were observed in two species of green algae Chlamydomonas reinhardtii and Dunaliella tertiolecta. However, no difference was found in Euglena gracilis, Porphyridium cruentum, Anabaena variabilis, and Anacystis nidulans.  相似文献   

8.
Free amino acids, fatty acids and sterols from six species of Agaricaceae were determined. PRO, GLU, SER and ALA were the most abundant free amino acids. Among the fatty acids, linoleic, oleic and palmitic acids constituted almost all the fatty acid content. The mushrooms have been shown to contain ergosterol as the principal sterol.  相似文献   

9.
Fatty Acid synthesis in endosperm of young castor bean seedlings   总被引:10,自引:6,他引:4       下载免费PDF全文
Vick B  Beevers H 《Plant physiology》1978,62(2):173-178
Enzyme assays on organelles isolated from the endosperm of germinating castor bean (Ricinus communis) by sucrose density gradient centrifugation showed that fatty acid synthesis from [14C]malonyl-CoA was localized exclusively in the plastids. The optimum pH was 7.7 and the products was mainly free palmitic and oleic acids. Both NADH and NADPH were required as reductants for maximum activity. Acetyl-CoA, and acyl-carrier protein from Escherichia coli increased the rate of fatty acid synthesis, while low O2 levels suppressed synthesis. In the absence of NADPH or at low O2 concentration, stearic acid became a major product at the expense of oleic acid. Fatty acid synthesis activity was highest during the first 3 days of germination, preceding the maximum development of mitochondria and glyoxysomes. It is proposed that the plastids are the source of fatty acids incorporated into the membranes of developing organelles.  相似文献   

10.
Trypanosoma cruzi populations, composed primarily of trypomastigote forms, readily converted palmitic acid, linoleic acid, oleic acid, and stearic acid to CO2. Appreciable amounts of carbon from these four fatty acids were also incorporated into neutral and phospholipid lipids by these parasites. Palmitic acid, a 16 carbon saturated fatty acid, was converted at rates greater than those of the other three fatty acids.  相似文献   

11.
The aim of the present investigation has been to study whether the light factor influences the fat metabolism in the scots pine seeds in any way which could be correlated with its effect on the germination. The studies have been made on petroleum ether extracts. Gravimetric determinations showed small increases of extractable material during the first 24 hours of the germination process. After a longer time there was a small but insignificant consumption (72 hours). No effects of the light factor could be found. Investigations with gas-liquid chromatography on the corresponding extracts did not reveal any influence on the fatty acid composition, either of the light factor or of the germination period. The main identified fatty acids were linoleic, oleic, palmitic and stearic acid. One of the unidentified components (“c”) was also present in a large amount. Principally the same acids were found as free fatty acids but in different proportions: oleic, palmitic, linoleic and stearic acid. After the onset of the imbibition the linoleic acid appeared in the largest proportion. The total content of free fatty acids increased with increasing germination period. This was found both in titration experiments and in gas-liquid chromatography with an internal standard. The latter method permitted studies on the content of the individual acids. During the period 0–21 hours there were no evident differences between the content in light- and dark-germinated seeds, during the period up till 48 hours there was lower content in the light-germinated seeds concomitant with the onset of the mitotic activity in these seeds and after 48 hours there was a rapid increase in the same ones corresponding to the opening of the seed coats and the incipient protrusion of the rootlets. Thus changes of free fatty acid content were found only after the start of the light-induced growth but not under the preliminary phase, which earlier has been shown to be the determinative one in the light control of the germination.  相似文献   

12.
The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.  相似文献   

13.
Diet and postnatal age effect the fatty acid composition of plasma and tissue lipids. This work was designed as a transversal study to evaluate the changes in the fatty acid composition of plasma phospholipids, cholesteryl esters, triglycerides and free fatty acids in preterm infants (28-35 weeks gestational age), fed human milk (HM) and milk formula (MF) from birth to 1 month of life. Sixteen blood samples were obtained from cord, and 19 at 6-8 h after birth, 14 at 1 week and 9 at 4 weeks from HM-fed infants and 18 at 1 week and 14 at 4 weeks from MF-fed ones. Groups had similar mean birth weight, gestational age and sex ratio. The MF provided 69 kcal/dl and contained 16% of linoleic acid and 1.3% of alpha-linolenic acid on the total fat. Plasma lipid fractions were extracted and separated by thin-layer chromatography and fatty acid methyl esters were quantitated by gas liquid chromatography. In plasma phospholipids, linoleic acid (18:2 omega 6) continuously increased from birth to 1 month of age, but no changes were seen as related to type of diet; polyunsaturated fatty acids greater than 18 carbon atoms of both the omega 6 and omega 3 series (PUFA omega 6 greater than 18 C and omega 3 greater than 18 C) dropped from birth to 1 week and continued to decrease in MF-fed infants until 1 month; eicosatrienoic (20:3 omega 6), arachidonic (20:4 omega 6) and docosahexaenoic (22:6 omega 3) were the fatty acids implicated. In cholesteryl esters palmitoleic (16:1 omega 7) and oleic (18:1 omega 9) acids decreased from birth to 1 month and linoleic acid increased and arachidonic acid dropped, especially in MF fed infants. In triglycerides, palmitic, palmitoleic and stearic acid (18:0) decreased during the first month of life; oleic acid remained constant and linoleic acid increased in all infants, but arachidonic acid decreased only in those fed formula. Free fatty acids showed a similar behavior in fatty acids and in plasma triglycerides. Preterm neonates seem to have special requirements of long-chain PUFA and adapted MF should contain these fatty acids in similar amounts to those of HM to allow the maintenance of an adequate tissue structure and physiology.  相似文献   

14.
The fatty acid components of awamori during aging were as follows. The total amount of volatile acids calculated as acetic acid ranged from 20 to 140 mg/l, the main acid was acetic acid, and the proportion of acetic acid to total acids ranged from 35 to 80 per cent. The main acids other than acetic acid were propionic acid and i-butyic acid. Differences were observed in fatty acid constituents between awamori and other alcoholic beverages.Certain components tended to increase during maturation in kame (porous earth-enware pots): acetic acid, i-butyric acid, i-valeric acid, valeric acid, capric acid, lauric acid, myristic acid and total fatty acids. Others, however, showed no distinct changes: propionic acid, butyric acid, caproic acid, caprylic acid, palmitic acid, stearic acid, oleic acid and linoleic acid.During maturation in non-porous containers (stainless-steel or glass-linked tanks), on the other hand, caprylic acid, capric acid, lauric acid and myristic acid components tended to increase, while no distinct changes however were shown by acetic acid, propionic acid, i-butyric, butyric acid, i-valeric acid, valeric acid, caproic acid, palmitic acid, stearic acid, oleic acid, linoleic acid and total fatty acids.  相似文献   

15.
Hepatic lipid droplets. Isolation, morphology and composition   总被引:4,自引:1,他引:3       下载免费PDF全文
The floating lipid layer isolated centrifugation of rat liver was examined for composition and ultrastructure. It was chiefly composed of triglycerides and cholesterol esters plus much smaller amounts of free cholesterol, diglycerides, phospholipid and protein. No free fatty acids were detected. The triglyceride and cholesterol ester fractions consisted mostly of esters of linoleic acid, oleic acid and palmitic acid. Electron micrographs of the floating lipid layer revealed numerous spherical osmiophilic droplets having a mean diameter of 0.5-2mum with a very-thin dense outer coat. Similar structures were observed as organelles in electron micrographs of the intact liver cell. The amount of triglyceride in the layer decreased in rats starved for 72h, but pellet triglyceride (homogenate minus the floating lipid layer) was unchanged. These results suggest that the floating lipid layer is the representative in vitro of lipid-rich organelles which probably function as a depot form of hepatic-cell neutral lipid.  相似文献   

16.
The signals of fatty acids in the form of triglycerides were observed in the 13C NMR spectrum of an intact soybean seed. The major fatty acid component composition of triglycerides in a soybean seed, which includes linoleic acid, oleic acid and palmitic acid, was estimated by subtracting the spectra of authentic fatty acids from the spectrum of the intact soybean seeds. The fatty acid compositions of seeds of 11 Japanese soybean cultivars and 5 lines bred at the Asian Vegetable Research and Development Center (AVRDC) were estimated by this rapid (within lhr for one seed) and nondestructive analytical method.  相似文献   

17.
《Plant science》1987,49(3):181-188
Turnip tops seeds have a high lipid content (47.22% dry wt.); there is clear predominance of neutral lipids, mainly triglycerides, which represent 71.8% of the total lipid content.These triglycerides decrease during germination, with a maximum descent taking place between the 5th and 6th days of germination; this coincides with the maximum content in fatty acids in the seeds. However, phospholipids and glycolipids increase gradually during the same period. Gas-chromatography studies of the total and free fatty acids of these seeds reveals a predominance of those with an even number of carbon atoms; the proportion of unsaturated fatty acids is greater than that of the saturated kind. Among the former, of note are the high proportions mainly of erucic acid and oleic acid present in many seeds of the Cruciferae; the main saturated fatty acids found are palmitic, stearic and behenic acid.  相似文献   

18.
Maturation of mustard (Sinapis alba) seed proceeds with a sharp decrease in the amounts of palmitic and linoleic acids in the total lipids up to 6 weeks after flowering (WAF). Concomitantly, the concentration of oleic acid increases, reaching a plateau at 4 WAF, which is followed by chain elongation of oleic acid to gadoleic and erucic acids. Compositional changes in constituent fatty acids of individual lipid classes indicate that the very long-chain monounsaturated fatty acids (C20 and C22), as opposed to common long-chain fatty acids (C16 and C18), are metabolized to triacylglycerols mainly by esterification to preformed diacylglycerols and monoacylglycerols, rather than via esterification to glycerol-3-phosphate or lysophosphatidic acids.  相似文献   

19.
We investigated the changes in adiposity, cardiovascular and liver structure and function, and tissue fatty acid compositions in response to oleic acid-rich macadamia oil, linoleic acid-rich safflower oil and α-linolenic acid-rich flaxseed oil (C18 unsaturated fatty acids) in rats fed either a diet high in simple sugars and mainly saturated fats or a diet high in polysaccharides (cornstarch) and low in fat. The fatty acids induced lipid redistribution away from the abdomen, more pronounced with increasing unsaturation; only oleic acid increased whole-body adiposity. Oleic acid decreased plasma total cholesterol without changing triglycerides and nonesterified fatty acids, whereas linoleic and α-linolenic acids decreased plasma triglycerides and nonesterified fatty acids but not cholesterol. α-Linolenic acid improved left ventricular structure and function, diastolic stiffness and systolic blood pressure. Neither oleic nor linoleic acid changed the left ventricular remodeling induced by high-carbohydrate, high-fat diet, but both induced dilation of the left ventricle and functional deterioration in low fat-diet-fed rats. α-Linolenic acid improved glucose tolerance, while oleic and linoleic acids increased basal plasma glucose concentrations. Oleic and α-linolenic acids, but not linoleic acid, normalized systolic blood pressure. Only oleic acid reduced plasma markers of liver damage. The C18 unsaturated fatty acids reduced trans fatty acids in the heart, liver and skeletal muscle with lowered stearoyl-CoA desaturase-1 activity index; linoleic and α-linolenic acids increased accumulation of their C22 elongated products. These results demonstrate different physiological and biochemical responses to primary C18 unsaturated fatty acids in a rat model of human metabolic syndrome.  相似文献   

20.
In the studies described here rat liver microsomes containing labeled palmitic, stearic, oleic or linoleic acids were incubated with fatty acid binding protein (FABP) and the rate of removal of14C-labeled fatty acids from the membrane by the soluble protein was measured using a model system. More unsaturated than saturated fatty acids were removed from native liver microsomes incubated with similar amounts of FABP. Thein vitro peroxidation of microsomal membranes mediated by ascorbate-Fe++, modified its fatty acid composition with a considerable decrease of the peroxidizability index. These changes in the microsomes facilitated the removal of oleic and linoeic acids by FABP, but the removal of palmitic and stearic acids was not modified. This effect is proposed to result from a perturbation of membrane structure following peroxidation with release of free fatty acids from susceptible domains.Abbreviations BSA bovine serum albumin - FABP fatty acid binding protein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号