首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cryptomonads are an enigmatic group of marine and freshwater unicellular algae that acquired their plastids through the engulfment and retention of a eukaryotic ("secondary") endosymbiont. Together with the chlorarachniophyte algae, the cryptomonads are unusual in that they have retained the nucleus of their endosymbiont in a miniaturized form called a nucleomorph. The nucleomorph genome of the cryptomonad Guillardia theta has been completely sequenced and with only three chromosomes and a total size of 551 kb, is a model of nuclear genome compaction. Using this genome as a reference, we have investigated the structure and content of nucleomorph genomes in a wide range of cryptomonad algae. In this study, we have sequenced nine new cryptomonad nucleomorph 18S ribosomal DNA (rDNA) genes and four heat shock protein 90 (hsp90) gene fragments, and using pulsed-field gel electrophoresis and Southern hybridizations, have obtained nucleomorph genome size estimates for nine different species. We also used long-range polymerase chain reaction to obtain nucleomorph genomic fragments from Hanusia phi CCMP325 and Proteomonas sulcata CCMP704 that are syntenic with the subtelomeric region of nucleomorph chromosome I in G. theta. Our results indicate that (1) the presence of three chromosomes is a common feature of the nucleomorph genomes of these organisms, (2) nucleomorph genome size varies dramatically in the cryptomonads examined, (3) unidentified cryptomonad species CCMP1178 has the largest nucleomorph genome identified to date at approximately 845 kb, (4) nucleomorph genome size reductions appear to have occurred multiple times independently during cryptomonad evolution, (5) the relative positions of the 18S rDNA, ubc4, and hsp90 genes are conserved in three different cryptomonad genera, and (6) interchromosomal recombination appears to be rapidly changing the size and sequence of a repetitive subtelomeric region of the nucleomorph genome between the 18S rDNA and ubc4 loci. These results provide a glimpse into the genetic diversity of nucleomorph genomes in cryptomonads and set the stage for more comprehensive sequence-based studies in closely and distantly related taxa.  相似文献   

2.
Cryptomonads have acquired photosynthesis through secondary endosymbiosis: they have engulfed and retained a photosynthetic eukaryote. The remnants of this autotrophic symbiont are severely reduced, but a small volume of cytoplasm surrounding the plastid persists, along with a residual nucleus (the nucleomorph) that encodes only a few hundred genes. We characterized tubulin genes from the cryptomonad Guillardia theta. Despite the apparent absence of microtubules in the endosymbiont, we recovered genes encoding alpha-, beta-, and gamma-tubulins from the nucleomorph genome of G. theta. The presence of tubulin genes in the nucleomorph indicates that some component of the cytoskeleton is still present in the cryptomonad symbiont despite the fact that very little cytoplasm remains, no mitosis is known in the nucleomorph, and microtubules have never been observed anywhere in the symbiont. Phylogenetic analyses with nucleomorph alpha- and beta-tubulins support the origin of the cryptomonad nucleomorph from a red alga. We also characterized alpha and beta-tubulins from the host nucleus of G. theta and compared these with tubulins we isolated from two flagellates, Goniomonas truncata and Cyanophora paradoxa, previously proposed to be related to the cryptomonad host. Phylogenetic analyses support a relationship between the cryptomonad host and Goniomonas but do not support any relationship between cryptomonads and Cyanophora.  相似文献   

3.
The relationship between phylogeny and nucleomorph genome size was examined in 16 strains of cryptomonad algae using pulsed‐field gel electrophoresis, Southern hybridization and phylogenetic analyses. Our results suggest that all cryptomonads examined in this study contain three nucleomorph chromosomes and their total genome size ranges from 495 to 750 kb. In addition, we estimated the plastid genome size of the respective organisms. The plastid genomes of photosynthetic strains were approximately 120–160 kb in size, whereas the non‐photosynthetic Cryptomonas paramecium NIES715 possesses a genome of approximately 70 kb. Phylogenetic analysis of the nuclear small subunit ribosomal DNA (SSU rDNA) gene showed that nucleomorph genome size varies considerably within closely related strains. This result indicates that the reduction of nucleomorph genomes is a rapid phenomenon that occurred multiple times independently during cryptomonad evolution. The nucleomorph genome sizes of Cryptomonas rostratiformis NIES277 appeared to be approximately 495 kb. This is smaller than that of Guillardia theta CCMP327, which until now was thought to have the smallest known nucleomorph genome size among photosynthetic cryptomonads.  相似文献   

4.
Cryptomonads are ubiquitous aquatic unicellular eukaryotes that acquired photosynthesis through the uptake and retention of a red algal endosymbiont. The nuclear genome of the red alga persists in a highly reduced form termed a nucleomorph. The nucleomorph genome of the model cryptomonad Guillardia theta has been completely sequenced and is a mere 551 kilobases (kb) in size, spread over three chromosomes. The presence of three chromosomes appears to be a universal characteristic of nucleomorph genomes in cryptomonad algae as well as in the chlorarachniophytes, an unrelated algal lineage with a nucleomorph and plastid genome derived from a green algal endosymbiont. Another feature of nucleomorph genomes in all cryptomonads and chlorarachniophytes examined thus far is the presence of subtelomeric ribosomal DNA (rDNA) repeats at the ends of each chromosome. Here we describe the first exception to this canonical nucleomorph genome architecture in the cryptomonad Hemiselmis rufescens CCMP644. Using pulsed-field gel electrophoresis (PFGE), we estimate the size of the H. rufescens nucleomorph genome to be approximately 580 kb, slightly larger than the G. theta genome. Unlike the situation in G. theta and all other known cryptomonads, sub-telomeric repeats of the rDNA cistron appear to be absent on both ends of the second largest chromosome in H. rufescens and two other members of this genus. Southern hybridizations using a variety of nucleomorph protein gene probes against PFGE-separated H. rufescens chromosomes indicate that recombination has been a major factor in shaping the karyotype and genomic structure of cryptomonad nucleomorphs.  相似文献   

5.
Cryptomonads are unicellular flagellates whose plastids are surrounded by four membranes. A periplastidal compartment, containing eukaryote-type ribosomes, starch grains and a so-called nucleomorph, is located between the inner and outer membrane pairs. The nucleomorph has been shown to be the vestigial nucleus of a eukaryotic endosymbiont. In order to obtain more information about the chromatin structure of the nucleomorph and the host nuclear chromosomes, we studied the distribution of the histone, H4. H4 was not detectable in the nucleomorph by immunolocalization, thus supporting earlier findings by Gibbs [In: Wiesner et al. (Eds.), Experimental Phycology 1, 1990, pp. 145–157]. Likewise, no H4 DNA was demonstrable in the nucleomorph by Southern hybridization. Sequence analysis, and Southern and Northern blot data of a cryptomonad gene, H4, indicate an intermediate position for these genes between animals and plants.  相似文献   

6.
Summary The nucleomorph is a unique self-replicating organelle which is invariably present in the periplastidal compartment of cryptomonads. The nucleomorph ofCryptomonas abbreviata is located in a groove on the inner face of the pyrenoid. When JB-4-embedded sections ofC. abbreviata are stained with 4-6-diamidino-2-phenylindole (DAPI), the nucleomorph exhibits a blue fluorescence characteristic of DNA-DAPI complexes. This fluorescence is removed by DNase digestion, but not by RNase. When cells are prepared for electron microscopy by the method of Ryter and Kellenberger (Schreil 1964), a network of fine DNA-like fibrils is observed in the nucleomorph matrix. It is estimated that the nucleomorph contains between 108 and 109 daltons of DNA. The presence of DNA in nucleomorphs strongly supports the hypothesis that the nucleomorph is the vestigial nucleus of a eukaryotic endosymbiont. It is postulated that this eukaryotic symbiont was an ancestral red alga or an organism closely related to red algae. The cryptomonad host cell, on the other hand, is not evolutionarily close to any other group of algae.  相似文献   

7.
Gilson PR 《Genome biology》2001,2(8):reviews1022.1-reviews10225
The DNA sequence of one of the smallest eukaryotic genomes has recently been finished - that of the reduced nucleus, or nucleomorph, of an algal endosymbiont that resides within a cryptomonad host cell. Its sequence promises insights into chloroplast acquisition, the constraints on genome size and the basic workings of eukaryotic cells.  相似文献   

8.
The cryptomonad cell has presumably arisen by a secondary symbiotic event involving two eukaryotes, and thus is composed of four different DNA-containing compartments (nucleus, nucleomorph, plastid, and mitochondrion). In the present paper, the isolation and quantitative DNA estimation of the host cell nucleus and the nucleomorph, a vestigial eukaryotic nucleus, is presented. In the presence of CaCl2, the host nucleus could be isolated from cells lysed by Triton X-100. For isolation of the nucleomorph, cells were slightly fixed with glutardialdehyde and thereafter, lysed by treatment with proteinase K and Triton X-100, leaving an intact nucleomorph-pyrenoid complex. Nuclei were further purified by isopycnic Percoll density gradient centrifugation. Purity and quality of the two nuclear fractions were checked by means of DAPI-epifluorescence microscopy and electron microscopy. The DNA content of the host nucleus and nucleomorph, determined by the diphenylamine method and by means of quantitative microspectrofluorometry, respectively, was found to be more than 700 times higher in the host nucleus than in the nucleomorph.  相似文献   

9.
Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.  相似文献   

10.
The complete large subunit rRNA sequences from the red algaePalmaria palmataandGracilaria verrucosa,and from the nucleomorph of the cryptomonadGuillardia theta,were determined in order to assess their phylogenetic relationships relative to each other and to other eukaryotes. Neighbor-joining, maximum-parsimony, and maximum-likelihood trees were constructed on the basis of small subunit rRNA, large subunit rRNA, and a combination of both molecules. Our results support the hypothesis that the cryptomonad plastid is derived from a primitive red alga, in that an ancient common ancestor of rhodophytes and cryptomonad nucleomorphs is indicated. This cluster shows some affinity with chlorobionts, which could point to a monophyletic origin of green and red plastids. However, the exact branching order of the crown eukaryotes remains uncertain and further research is required.  相似文献   

11.
U G Maier 《Bio Systems》1992,28(1-3):69-73
Cryptomonads are a group of unicellular eukaryotic algae with unusual features. First, their plastids are surrounded by four membranes and second, between the two pairs of membranes there is a plasmatic compartment. This supernumerary eukaryotic compartment of the cryptomonad cell is devoid of mitochondria but contains starch grains, 80S ribosomes and a small vestigial eukaryotic nucleus called the nucleomorph. Isolation and characterization of the four genomes (from mitochondrion, plastid, nucleus and nucleomorph) of one cryptomonad, Pyrenomonas salina, demonstrates that the cryptomonads have originated from an unicellular organism related to green algae which endosymbiotically took up a eukaryotic protist related to the red algae.  相似文献   

12.
Cryptomonads are unicellular algae with chloroplasts surrounded by four membranes. Between the inner and the outer pairs of membranes is a narrow plasmatic compartment which contains a nucleus-like organelle called the nucleomorph. Using pulsed field gel electrophoresis it is shown that the nucleomorph of the cryptomonad Pyrenomonas salina contains three linear chromosomes of 195 kb, 225 kb and 240 kb all of which encode rRNAs. Thus, this vestigial nucleus has a haploid genome size of 660 kb, harboring the smallest eukaryotic genome known so far. From the cell nucleus of P. salina at least 20 chromosomes ranging from 230 kb to 3.000 kb were fractionated. Here, the rDNA was detected on a single chromosome of about 2.500 kb.  相似文献   

13.
Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.  相似文献   

14.
The complete large subunit rRNA sequences from the red algae Palmaria palmata and Gracilaria verrucosa, and from the nucleomorph of the cryptomonad Guillardia theta, were determined in order to assess their phylogenetic relationships relative to each other and to other eukaryotes. Neighbor-joining, maximum-parsimony, and maximum-likelihood trees were constructed on the basis of small subunit rRNA, large subunit rRNA, and a combination of both molecules. Our results support the hypothesis that the cryptomonad plastid is derived from a primitive red alga, in that an ancient common ancestor of rhodophytes and cryptomonad nucleomorphs is indicated. This cluster shows some affinity with chlorobionts, which could point to a monophyletic origin of green and red plastids. However, the exact branching order of the crown eukaryotes remains uncertain and further research is required.  相似文献   

15.
Gilson PR  McFadden GI 《Genetica》2002,115(1):13-28
There are two ways eukaryotic cells can permanently acquire chloroplasts. They can take up a cyanobacterium and turn it into a chloroplast or they can engulf an alga that already has a chloroplast. The second method is far more common and there are at least seven major groups of protists that have obtained their chloroplasts, this way. In most cases little remains of the engulfed alga apart from its chloroplast, but in two groups, the cryptomonads and chlorarachniophytes, a small remnant nucleus of the engulfed alga is still present. These tiny nuclei, called nucleomorphs, are the smallest and most compact eukaryotic genomes known and recently the nucleomorph of the cryptomonad alga Guillardia theta, was completely sequenced (551 kilobases). The nucleomorph of the chlorarachniophyte Bigellowiella natans (380 kilobases), is also being sequenced and is about half complete. We discuss some of the similarities and differences that are emerging between these two nucleomorph genomes. Both genomes contain just three chromosomes that encode mainly housekeeping genes and a few proteins for chloroplast functions. The bulk of nucleomorph gene coding capacity, therefore, appears to be devoted to self perpetuation and creating gene and protein expression machineries to make a small number of essential chloroplast proteins. We discuss reasons why both nucleomorphs are extraordinarily compact and why their gene sequences are evolving rapidly.  相似文献   

16.
Wastl J  Sticht H  Maier UG  Rösch P  Hoffmann S 《FEBS letters》2000,471(2-3):191-196
We have identified an open reading frame with homology to prokaryotic rubredoxins (rds) on a nucleomorph chromosome of the cryptomonad alga Guillardia theta. cDNA analysis let us propose that the rd preprotein has an NH(2)-terminal extension that functions as a transit peptide for import into the plastid. Compared to rds found in non-photosynthetic prokaryotes or found in bacteria that exhibit an anoxigenic photosynthesis apparatus, nucleomorph rd has a COOH-terminal extension, which shows high homology exclusively to the COOH-termini of cyanobacterial rds as well as to a hypothetical rd in the Arabidopsis genome. This extension can be divided into a putative membrane anchor and a stretch of about 20 amino acids with unknown function linking the common rd fold to this anchor. Overexpression of nucleomorph rd in Escherichia coli using a T7 RNA polymerase/promotor system resulted in a mixture of iron-containing holorubredoxin and zinc-substituted protein. Preliminary spectroscopic studies of the iron form of nucleomorph rd suggest the existence of a native rd-type iron site. One-dimensional nuclear magnetic resonance spectroscopy of recombinant Zn-rd suggests the presence of a stable tertiary fold similar to that of other rd structures determined previously.  相似文献   

17.
Cryptomonads and chlorarachniophytes acquired photosynthesis independently by engulfing and retaining eukaryotic algal cells. The nucleus of the engulfed cells (known as a nucleomorph) is much reduced and encodes only a handful of the numerous essential plastid proteins normally encoded by the nucleus of chloroplast-containing organisms. In cryptomonads and chlorarachniophytes these proteins are thought to be encoded by genes in the secondary host nucleus. Genes for these proteins were potentially transferred from the nucleomorph (symbiont nucleus) to the secondary host nucleus; nucleus to nucleus intracellular gene transfers. We isolated complementary DNA clones (cDNAs) for chlorophyll-binding proteins from a cryptomonad and a chlorarachniophyte. In each organism these genes reside in the secondary host nuclei, but phylogenetic evidence, and analysis of the targeting mechanisms, suggest the genes were initially in the respective nucleomorphs (symbiont nuclei). Implications for origins of secondary endosymbiotic algae are discussed.  相似文献   

18.
Nucleomorph genomes: structure, function, origin and evolution   总被引:4,自引:0,他引:4  
The cryptomonads and chlorarachniophytes are two unicellular algal lineages with complex cellular structures and fascinating evolutionary histories. Both groups acquired their photosynthetic abilities through the assimilation of eukaryotic endosymbionts. As a result, they possess two distinct cytosolic compartments and four genomes--two nuclear genomes, an endosymbiont-derived plastid genome and a mitochondrial genome derived from the host cell. Like mitochondrial and plastid genomes, the genome of the endosymbiont nucleus, or 'nucleomorph', of cryptomonad and chlorarachniophyte cells has been greatly reduced through the combined effects of gene loss and intracellular gene transfer. This article focuses on the structure, function, origin and evolution of cryptomonad and chlorarachniophyte nucleomorph genomes in light of recent comparisons of genome sequence data from both groups. It is now possible to speculate on the reasons that nucleomorphs persist in cryptomonads and chlorarachniophytes but have been lost in all other algae with plastids of secondary endosymbiotic origin.  相似文献   

19.
Here we present evidence for a complex evolutionary history of actin genes in red algae and cryptomonads, a group that acquired photosynthesis secondarily through the engulfment of a red algal endosymbiont. Four actin genes were found in the nuclear genome of the cryptomonad, Guillardia theta, and in the genome of the red alga, Galdieria sulphuraria, a member of the Cyanidiophytina. Phylogenetic analyses reveal that the both organisms possess two distinct sequence types, designated “type-1” and “type-2.” A weak but consistent phylogenetic affinity between the cryptomonad type-2 sequences and the type-2 sequences of G. sulphuraria and red algae belonging to the Rhodophytina was observed. This is consistent with the possibility that the cryptomonad type-2 sequences are derived from the red algal endosymbiont that gave rise to the cryptomonad nucleomorph and plastid. Red algae as a whole possess two very different actin sequence types, with G. sulphuraria being the only organism thus far known to possess both. The common ancestor of Rhodophytina and Cyanidiophytina may have had two actin genes, with differential loss explaining the distribution of these genes in modern-day groups. Our study provides new insight into the evolution and divergence of actin genes in cryptomonads and red algae, and in doing so underscores the challenges associated with heterogeneity in actin sequence evolution and ortholog/paralog detection.  相似文献   

20.
P. Hansmann 《Protoplasma》1988,146(2-3):81-88
Summary In a previous study, DNA was localized in cells of two cryptomonads,Pyrenomonas sp. andCryptomonas ovata, by use of immuno-gold technique. Of particular interest was the ultrastructural localization of DNA in the nucleomorph, supposed to be a vestigial nucleus of a former endosymbiont [Hansmann Pet al. (1986) Eur J Cell Biol 42: 152–160]. In the present paper, distribution of RNA in the same two organisms is reported. RNA was detected by the specific and very sensitive RNase-gold method. RNA could be demonstrated in all of the four plasmatic compartments of cryptomonad cells (cytoplasm, periplastidal compartment, mitochondrion, and plastid), although the amounts differed greatly in the respective compartments. In the nucleus, the condensed chromatin and the nucleolus were preferentially labeled. Intense labeling could also be found over the fibrillogranular region of the nucleomorph. This fact lends strong support to the supposition that the fibrillogranular body represents the structural and functional equivalent of a nucleolus and thus again supports the hypothesis that the nucleomorph represents a vestigial eukaryotic nucleus. InPyrenomonas sp., gold-particle density over the nucleolus and the fibrillogranular body was quantitatively evaluated in order to compare their respective RNA synthesizing activities. Labeling density over the nucleolus was found to be 2.7 times higher and thus, on account of its greater volume, the nucleolus may contain 17 times more RNA than the fibrillogranular body of the nucleomorph.Abbreviations BSA bovine serum albumin - ER endoplasmic reticulum - GA glutaraldehyde - SSC standard saline citrate - SSCB SSC containing BSA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号