首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of gibberellins (GA) reduces the difference in stem elongation observed under a low day (DT) and high night temperature (NT) combination (negative DIF) compared with the opposite regime, a high DT/low NT (positive DIF). The aim of this work was to investigate possible thermoperiodic effects on GA metabolism and tissue sensitivity to GA by comparing the response to exogenously applied GA (in particular, GA1 and GA3) in pea plants (Pisum sativum cv. Torsdag) grown under contrasting DIF. Control plants not treated with growth inhibitors or additional GA were 38% shorter under negative (DT/NT 13/21°C) than positive DIF (DT/NT 21/13°C) because of shorter internodes. Additional GA1 or GA3 decreased the difference between positive and negative DIF. In pea plants dwarfed with paclobutrazol, which inhibits GA biosynthesis at an early step, the response to GA1 was reduced more strongly by negative compared with positive DIF than the response to GA3. The induced stem elongation by GA19 and GA20 did not deviate significantly from the response to GA1. Plants treated with prohexadione-calcium, an inhibitor of both the production and the inactivation of GA1, grew equally tall under the two temperature regimes in response to both GA1 and GA3. We hypothesize that the reduced response to GA1 compared with GA3 in paclobutrazol-treated plants grown under negative DIF is caused by a higher rate of 2β-hydroxylation of GA1 into GA8 under negative than positive DIF. This contributes to lower levels of GA1 and consequently shorter stems and internodes in pea plants grown under negative than positive DIF. Differences in tissue sensitivity to GA alone cannot account for this specific thermoperiodic effect on stem elongation. Received May 28, 1998; accepted May 29, 1998  相似文献   

2.
Gibberellic acid (GA3) inhibits amaranthin synthesis whereas the growth retardant, phosphon D, enhances pigment levels in A. caudatus seedlings exposed to light. No effect was observed on chlorophyll and carotenoid synthesis. Radioactive tyrosine and DOPA were incorporated into amaranthin. The specific activity of amaranthin synthesised in the presence of 14C-tyrosine or 14C-DOPA in seedlings treated with GA3 is higher than water controls. The specific activity of pigment from phosphon D treated tissue is relatively low. GA3 treated tissue has lower active tyrosine and DOPA pools compared to phosphon treated seedlings. Tyrosine and DOPA-oxidase activity increases in GA3 treated and H2O control seedlings exposed to light. Kinetin stimulates the synthesis of amaranthin in dark-grown seedlings and this is not overcome by simultaneous GA3 application. Dark-grown seedlings treated with different kinetin concentrations and incubated in 14C-tyrosine synthesise radioactive amaranthin of similar specific activity. Kinetin treatment of dark-grown seedlings brings about an increased tyrosine and DOPA-oxidase activity. The results indicate that GA3 controls the production and/or availability of tyrosine whereas kinetin can mimic light treatment and controls the utilisation of tyrosine probably by bringing about the synthesis or activation of tyrosine and DOPA-oxidase protein.  相似文献   

3.
以1年生紫斑牡丹幼苗为试验材料,采用不同浓度(0、100、300、500 mg/L)赤霉素(GA_3)喷施叶片处理,通过透射电镜、扫描电镜、光学显微镜观察幼苗叶片解剖结构,光合仪测定幼苗光合参数并以酶联免疫吸附法测叶片内源激素含量,探究外源GA_3对紫斑牡丹幼苗叶片解剖结构、光合特性和内源激素水平的影响。结果表明:(1)低浓度GA_3处理的紫斑牡丹叶肉细胞增大,栅栏组织外层细胞中叶绿体数量增加,高浓度GA_3处理则与之相反;GA_3处理叶片的栅栏组织/海绵组织比值(P/S)、组织结构紧密度(CTR)均下降,而其组织结构疏松度(SR)增加;GA_3处理的幼苗叶片的叶肉细胞内各叶绿体大小显著大于对照,随着GA_3处理浓度增加,紫斑牡丹叶肉细胞内叶绿体的体积趋于增大,类囊体垛叠凝聚逐渐松散,叶绿体上淀粉颗粒在300 mg/L GA_3处理中较明显;叶片气孔长度、宽度、气孔器大小、气孔开度和气孔密度随着GA_3浓度升高先升高后下降,同时叶片上表皮角质层厚度随GA_3浓度的升高而增加。(2)紫斑牡丹叶片净光合速率(P_n)、气孔导度(Cond)、蒸腾速率(T_r)、水分利用率(WUE)在100和300 mg/L GA_3处理下大都显著高于对照,且300 mg/L GA_3处理显著高于其余处理,而其在500 mg/L GA_3处理下显著低于对照。(3)紫斑牡丹叶片脱落酸(ABA)和吲哚乙酸(IAA)含量均在500 mg/L GA_3下显著高于对照,而在其余浓度处理下不同程度低于对照,叶片内源玉米素核苷(ZR)和GA_3含量均在300 mg/L GA_3处理下显著高于其余处理和对照,而其余处理相比对照均无显著变化;叶片的ZR/ABA、ZR/IAA、ZR/GA_3和(IAA+GA_3+ZR)/ABA比值都在300 mg/L GA_3处理下显著高于其他处理,叶片的IAA/ABA和ABA/GA_3比值均在500 mg/L GA_3处理下显著高于其他处理。研究发现,适宜浓度外源GA_3处理,能显著提高紫斑牡丹幼苗叶片光合速率、水分利用效率及蒸腾速率,调节植物体内源激素的含量及平衡,从而使叶片能合成较多有机物,促进幼苗生长。  相似文献   

4.
Summary When aleurone layers were treated with labeled gibberellin A1 (3H-GA1), gibberellin A5 (3H-GA5) and the methyl ester of 3H-GA5 (3H-GA5-ME), radioactivity was accumulated by the tissue for a period of 20–30 h. After this time, radioactivity was released into the medium. Concomitantly, ribonuclease was also liberated by the tissue. The radioactivity accumulated by aleurone layers was associated with polar metabolites of the respective GAs, and the extent of extent of accumulation was a function of the degree of GA metabolism (GA5-ME>GA5>GA1). Accumulation of radioactivity was inhibited in the cold and by the metabolic poisons NaF and dinitrophenol. This was thought to be due to inbition of GA metabolism. The accumulation of 3H-GA1 in aleurone tissue did not reach saturation when unlabeled GA3 up to 10-2 M was added to the incubation medium.Abbreviations GA gibberellin - GA5 ME, gibberellin A5 methyl ester - RNase ribonuclease  相似文献   

5.
R. L. Jones 《Protoplasma》1987,138(2-3):73-88
Summary The cytochemical localization of adenosine triphosphatase (ATPase) was studied in the aleurone layer of barley (Hordeum vulgare L. cv. Himalaya). Isolated barley aleurone layers secrete numerous enzymes having acid phosphatase activity, including ATPase. The secretion of these enzymes was stimulated by incubation of the aleurone layer in gibberellic acid (GA3). ATPase was localized using the metal-salt method in tissue incubated in CaCl2 with and without GA3. In sections of tissue incubated without GA3, cytochemical staining was confined to a narrow band of cytoplasm adjacent to the starchy endosperm and to the cell wall of the innermost tier of aleurone cells. Cytochemical staining was absent from the organelles of tissues not treated with GA3. In tissue incubated in the presence of GA3, cytochemical staining was evident throughout the cytoplasm and cell walls of the tissue. In the cell wall, electron-dense deposits were found only in digested channels. The cell-wall matrix of GA3-treated aleurone did not stain, indicating that it does not permit diffusion of enzyme. In the cytoplasm of GA3-treated aleurone, all organelles except microbodies, plastids, and spherosomes stained for ATPase activity; endoplasmic reticulum (ER), Golgi apparatus, and mitochondria showed intense deposits of stain. The ER of the aleurone is a complex system made up of flattened sheets of membrane, which may be associated with both the Golgi apparatus and the plasma membrane. The dictyosome did not stain uniformly for ATPase activity; rather there was a gradation in staining of the cisternae from thecis (lightly stained) to thetrans (heavily stained) face. Vesicles associated with dictyosome cisternae also stained intensely as did the protein bodies of GA3-treated aleurone cells.  相似文献   

6.
Literature data point to a possible link between gibberellic acid (GA3) and glutathione metabolism in plant tissue, as both are connected to dormancy breakage. In order to study the influence of GA3 on glutathione metabolism, we treated an anthocyanin accumulating cell culture of periwinkle (Catharanthus roseus) and a shoot differentiated culture of pea (Pisum sativum) with GA3. Glutathione reductase (GR; E.C. 1.6.4.2) activity increased to 135% and 190% of the control in C. roseus and P. sativum, respectively. The level of oxidized glutathione (GSSG) decreased to 60% of the control in the C. roseus culture while no change in GSSG was observed in the P. sativum culture. No changes in the tissue concentration of total glutathione was observed in the cultures after GA3 treatment. Concomitant to the changes in GSSG and GR, an increase in anthocyanin accumulation was observed in the C. roseus culture in association with a strong increase in phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) activity in response to GA3. These data strongly suggest a link between GA3 and glutathione metabolism.  相似文献   

7.
Aleurone layers, with testa attached, were prepared from degermed, decorticated barley with the aid of a fungal enzyme preparation. The preparations appeared intact under the scanning electron microscope. By using antibiotics only in an early stage preparations were obtained uncontaminated by micro-organisms and which, when incubated under optimal conditions with gibberellic acid, GA3, produced near-maximal amounts of α-amylase. The enzyme accumulated in the tissue before it was released into the incubation medium. Daily replacement of the incubation medium, containing GA3, depressed the quantity of α-amylase produced. α-Amylase was also produced in response to gibberellins GA1, GA4 and GA7 and, to a much lesser extent, helminthosporol and helminthosporic acid. A range of other substances, reported elsewhere to induce α-amylase formation, failed to do so in these trials. At some concentrations, glutamine marginally enhanced the quantity of enzyme formed during prolonged incubations. It is confirmed that α-glucosidase occurs in the aleurone layer and embryo of ungerminated barley, and increases in amount during germination. GA3 is shown to enhance this increase. When embryos arc burnt, to prevent gibberellin formation, no rise in α-glucosidase levels occurs unless GA3 is supplied to the grains. As the activity of α-glucosidase and other enzymes have been determined as ‘α-amylase’ by some assay methods, their alterations in activity in response to GA3 necessitates a re-evaluation of the evidence for de novo) synthesis of α-amylase in aleurone tissue.  相似文献   

8.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

9.
《Plant science》1986,46(1):35-41
In an attempt to address the controversy in the literature as to whether phytohormones have any direct effect on phloem loading of sucrose, we investigated the effect of gibberellic acid (GA3) and indoleacetic acid (IAA) on sugar transport and translocation in celery (Apium graveolens L. cv. Utah 5270). Both hormones enhanced sucrose uptake into isolated vascular bundles and phloem tissue of celery and enhanced the export of 14C assimilates from leaves of intact plants in vivo. The hormone-induced increase of uptake into isolated vascular bundles or phloem was specific for sucrose and mannitol which are translocated in phloem. Furthermore, the hormone-induced increase in translocation was not due to an increase in sink demand, since neither glucose nor sucrose uptake rates were affected in the storage parenchyma tissue discs (sink region) in the presence of GA3 or IAA. The evidence suggests that phytohormones may have a direct effect on phloem loading of sucrose. The possibility of short-term GA3 and IAA effects on processes resulting in membrane transport of sugars in celery is discussed.  相似文献   

10.
Gibberellin A4 (GA4) is biologically active in Salix pentandra and is able to induce stem elongation in seedlings grown under short day (SD) conditions, as well as in seedlings grown under long day (LD) conditions and treated with a growth retardant BX-112. [3H2]GA4 and [2H2]GA4 were applied to seedlings and leaf and stem explants of S. pentandra, and metabolites were studied using HPLC and GC-MS. After application of [3H2]GA4 to seedlings of S. pentandra, one of the three main radioactive metabolites in the free acid fraction had retention properties similar to GA1. Using [2H2]GA4, this compound was identified by GC-MS with SIM as [2H2]GA1 both from short day-grown and BX-112-treated seedlings, as well as in leaf and stem explants. After injection of GA4 into a mature leaf, GA1 was mainly found in the elongating stem tissue. Thus, the possibility that the biological activity of GA4 in Salix is due to its conversion to GA1 cannot be excluded.  相似文献   

11.
Kinetin at physiological concentrations causes significant reduction of GA3-promoted growth in excised Avena stem segments. Kinetin is therefore considered to be a gibberellin-antagonist in this system. A Lineweaver-Burke plot reveals that kinetin acts non-competitively with GA3. The kinetin inhibition of GA3-promoted growth can be seen within 6 hours. It was found that soluble protein is markedly increased by kinetin in the tissue during the first 3 hours, thus preceding the inhibition of GA3-promoted growth by several hours. At the cellular level, kinetin negated the blocking effect of GA3 on cell division in the intercalary meristem portions of these segments. In fact, kinetin promotes both lateral and longitudinal cell divisions in intercalary meristem cells.  相似文献   

12.
The role of calmodulin (CaM) in gibberellic acid (GA3)-stimulated Ca2+ uptake was investigated in endomembranes isolated from aleurone cells of barley (Hordeum vulgare L.). Unidirectional Ca2+ -uptake activity of endoplasmic reticulum (ER) was higher in membranes isolated from aleurone layers treated for 16 h with GA3 and Ca2+ compared with those isolated from layers incubated in Ca2+ alone. However, the level of uptake from Ca2+-treated tissue could be stimulated to that of the GA3-treated cells by applying exogenous CaM which increased the V max of the Ca2+ transporter approximately threefold. Calcium uptake in ER from GA3-treated tissue was inhibited by the CaM antagonist W7 in 50% of experiments, whereas the activity in membranes from non-GA3-treated tissue was unaffected. Treatment with GA3 also led to a twofold increase in CaM levels in aleurone layers within 4–6 h, paralleling the time course of the stimulation of Ca2+ uptake and preceding the stimulation of α-amylase secretion. We propose that the elevation of Ca2+ uptake into the ER induced by GA3 may be coordinated and regulated by elevated levels of membrane-associated CaM and this may regulate Ca2+-dependent α-amylase synthesis in the lumen of the ER.  相似文献   

13.
T J Mozer 《Cell》1980,20(2):479-485
The patterns of protein synthesis in barley aleurone layers treated with gibberellic acid (GA3) and abscisic acid (ABA) are compared with the patterns observed in wheat germ in vitro translation assays directed by RNA isolated from similarly treated layers. When used alone, GA3 and ABA both induce the formation of new translatable mRNAs and cause new proteins to be synthesized. The effects of GA3 are more dramatic than those of ABA. In GA3-treated tissues, overall protein synthesis is redirected to produce large quantities of α-amylase and a few other GA3-induced proteins, while other protein synthesis is reduced or stopped. Large amounts of new translatable mRNA for α-amylase are also induced such that the dominant in vitro translation product is α-amylase. These changes are blocked by the simultaneous addition of ABA to the tissue. In GA3 plus ABA-treated layers, few changes in protein synthesis in vivo are observed when compared to protein synthesis in untreated tissue, although the induction of mRNA for α-amylase and the other GA3-induced mRNAs does occur. This indicates that ABA does not interfere with GA3 induction of translatable mRNAs but prevents the translation of these mRNAs in vivo. Thus ABA and potentially GA3 regulate the translation of proteins in vivo in barley aleurone layers.  相似文献   

14.
The influence of an interstock of the dwarfing cultivar M9 and the nondwarfing cultivar MM115 on the distribution and metabolism of labeled gibberellic acid A4 ([3H]GA4) of high specific radioactivity (5.18 × 1010 becquerel per millimole) applied to the xylem of the rootstock in grafted apple (Malus × domestica Borkh.) trees was compared. Free [3H] GA-like metabolites of [3H]GA4, including putative GA1, GA2, GA3, and GA34, as well as various 3H-putative GA glucosyl conjugates were detected in stem segments from both cultivars. M9 interstocks reduced the total uptake of [3H]GA4 and decreased the proportion of 3H metabolites transported to the shoots and leaves of scions. The M9 interstock tissue and adjacent rootstock and scion tissue retained a much greater amount and a higher proportion of the label than did comparable tissue of the nondwarfing MM115 interstock. In addition, the amount and proportion of free [3H]GAs was higher, and the proportion of putative [3H]GA glucosyl conjugates lower, in M9 interstocks compared to MM115. These effects of the dwarfing interstock on GA distribution and metabolism indicate a significant role for GAs in any satisfactory explanation of the dwarfing mechanism in apple.  相似文献   

15.
A significant depression of callus growth resulted from low concentrations of abscisic acid (ABA) added to the medium recommended by Linsmaier and Skoog. Low concentrations also decreased the chlorogenic acid and lignin content of the callus, and generally decreased amounts of scopolin and scopoletin in the tissue. Gibberellic acid (GA3) stimulated callus growth in a low concentration (0.1 mg/1) and inhibited growth at a high concentration (10.0 mg/1). Both levels of GA3 increased scopoletin accumulation in tobacco callus. A high concentration of GA3 increased the accumulation of scopolin and chlorogenic acids, whereas a low concentration decreased the amounts of these two phenolic compounds. In comparison with the control, lignin synthesis was stimulated by a low GA3 concentration, but a high GA3 concentration did not have a significant effect. Both low and high concentrations of GA3 overcame ABA inhibition of growth and lignin synthesis, and partially reversed ABA inhibition of scopoletin production. However, GA3 did not reverse the inhibitory effect of ABA on scopolin production. The low concentration of GA3 overcame the inhibition of chlorogenic acid production resulting from a 0.01 mg/1 concentration of ABA, but this was the only reversal of chlorogenic acid inhibition resulting from addition of GA3 to the medium.  相似文献   

16.
Improvement of potato has been accomplished using conventional and non-conventional approaches coupled with numerous tissue culture procedures. The aim of the present study was to assess the efficacy of gibberellic acid (GA3) on the morphogenesis of International Potato Center (CIP) potato explants and acclimatization of plantlets in the field. Nodal segments as an explant source (1–1.5 cm) were isolated from 31 CIP potato plantlets and were inoculated into Murashige and Skoog (MS) medium supplemented with 0.0 (control), 0.1, 0.5, or 1.0 mg L?1of GA3. The variation in growth parameters of the cultivars was then observed. The highest shoot induction occurred in MS medium containing 1.0 mg L?1 GA3 with an increase in the inter-nodal distance between nodes as compared to other treatments. Higher concentration (1.0 mg L?1) of GA3 significantly increased plant height and root length in the treated germplasm however; this concentration was inhibitory to the number of nodes and roots per plant. The number of leaves was significantly increased in plants receiving GA3 treatment at lower concentration (0.1 mg L?1). The 31 CIP genotypes were transplanted to the field and checked for yield quality traits. It was concluded from the results that GA3 had significant effects on morphogenesis and was effective in the acclimatization of CIP potato plantlets in field.  相似文献   

17.
Gibberellins A1 and A3 are the major physiologically active gibberellins (GAs) present in young fruit of pea (Pisum sativum L.). The relative importance of these GAs in controlling fruit growth and their biosynthetic origins were investigated in cv. Alaska. In addition, the non-13-hydroxylated active GAs, GA4 and GA7, were identified for the first time in young seeds harvested 4 d after anthesis, although they are minor components and are not expected to play major physiological roles. The GA1 content is maximal in seeds and pods at 6 d after anthesis, the time of highest growth-rate of the pod (Garcia-Martinez et al. 1991, Planta 184: 53–60), whereas gibberellic acid (GA3), which is present at high levels in seeds 4–8 d after anthesis, has very low abundance in pods. Gibberellins A19, A20 and A29 are most concentrated in seeds at, or shortly after, anthesis and their abundance declines rapidly with development, concomitant with the sharp increase in GA1 and GA3 content. Application of GA1 or GA3 to the leaf subtending an emasculated flower stimulated parthenocarpic fruit development. Measurement of the GA content of the pods at 4 d after anthesis indicated that only 0.002–0.5% of the applied GA was transported to the fruit, depending on dose. There was a linear relationship between GA1 content and pod weight up to about 2 ng · (g FW)−1, whereas no such correlation existed for GA3 content. The concentration of endogenous GA1 in pods from pollinated ovaries is just sufficient to give the maximum growth response. It is concluded that GA1, but not GA3, controls pod growth in pea; GA3 may be involved in early seed development. The distribution of GAs within the seeds at 4 d post anthesis was also investigated. Most of the GA1, GA8, GA19, GA20 and GA29 was present in the testa, whereas GA3 was distributed equally between testa and endosperm and GA4 was localised mainly in the endosperm. Of the GAs analysed, only GA3 and GA20 were detected in the embryo. Metabolism experiments with intact tissues and cell-free fractions indicated compartmentation of GA biosynthesis within the seed. Using 14C-labelled GA12, GA9, 2,3-didehydroGA9 and GA20 as substrates, the testa was shown to contain 13-hydroxylase and 20-oxidase activities, the endosperm, 3β-hydroxylase and 20-oxidase activities. Both tissues also produced 16,17-dihydrodiols. However, GA1 and GA3 were not obtained as products and it is unlikely that they are formed via the early 13-hydroxylation pathway. [14C]gibberellin A12, applied to the inside surface of pods in situ, was metabolised to GA19, GA20, GA29, GA29-catabolite, GA81 and GA97, but GA1 was not detected. Gibberellin A20 was metabolised by this tissue to GA29 and GA29-catabolite. Received: 23 July 1996 / Accepted: 2 September 1996  相似文献   

18.
Metabolism of [3H]gibberellin A1 ([3H]GA1) was followed in intact seedlings and excised apices and leaf tissue of both dwarf and normal (tall) plants of d-5 maize (Zea mays L.). The three metabolites produced were tentatively identified as [3H]GAs, [3H]GAs-glucoside ([3H]GAs-glu), and [3H]GA1-X, an unknown.  相似文献   

19.
Gibberellic acid (GA3) inhibition of anthocyanin accumulation by carrot cell-suspension cultures was reversed by supplying dihydroquercitin or naringenin to the culture and not by supplying 4-coumaric acid or malonic acid. This suggested that gibberellic acid was inhibiting chalcone synthase, chalcone isomerase, or acetyl CoA carboxylase. Acetyl-CoA-carboxylase specific activity was the same in GA3-treated and untreated cultures and was not detected in cultures treated with uniconazole, an inhibitor of gibberellic acid biosynthesis. Chalcone-isomerase specific activity was lower in GA3-treated cultures than in untreated cultures and was lower in uniconazole-treated cultures than in the GA3-treated cultures. The total chalcone synthase activity in extracts from GA3- and from uniconazole-treated cells was not significantly different from that in extracts of untreated tissue. When these extracts were chromatographed on a Mono Q column, three peaks of chalcone synthase activity were found in extracts of nontreated cells, whereas only two of these peaks were detected in extracts of GA3-treated cells. The extracts from GA3-treated cells did not contain the peak of chalcone synthase activity that, in untreated cells, preceded the main peak. The correlation between the absence of this peak and the inhibition of anthocyanin accumulation suggests that this form of chalcone synthase is responsible for anthocyanin synthesis and that GA3 prevents this form from appearing in the cells.  相似文献   

20.
The potential for gibberellins (GAs) to control stem elongation and itsplasticity (range of phenotypic expression) was investigated inStellaria longipes grown in long warm days. Gibberellinmetabolism and sensitivity was compared between a slow-growing alpine dwarfwithlow stem elongation plasticity and a rapidly elongating, highly plastic prairieecotype. Both ecotypes elongated in response to exogenous GA1,GA4 or GA9, but surprisingly, the alpine dwarf wasrelatively unresponsive to GA3. Endogenous GA1,GA3, GA4, GA5, GA8, GA9and GA20 were identified and quantified in stem tissue harvested atcommencement, middle and end of the period of most rapid elongation. Theconcentration of GAs which might be expected to promote shoot elongation washigher during rapid elongation than toward its end for both ecotypes. Whilethere was a trend for certain GAs (GA3, GA4,GA9, GA20) to be higher in stems of the alpine ecotypeduring rapid elongation, that result does not explain the slower growth of thealpine ecotype and the faster growth of the prairie ecotype under a range ofconditions. To determine if the two ecotypes metabolized GA20differently, plants were fed [2H]- or[3H]-GA20. The metabolic products identified included[2H2]-GA1, -GA8, -GA29,-GA60, -3-epi-GA1, GA118(-1-epi-GA60) and -GA77. The concentration of[2H2]-GA1 also did not differ between the twoecotypes and metabolism of [2H2]- or[3H]-GA20 was also similar. In the same experiments thepresence of epi-GA1, GA29, GA60,GA118 and GA77 was indicated, suggesting that these GAsmay also occur naturally in S. longipes, in addition tothose described above. Collectively, these results suggest that while stemelongation within ecotypes is likely regulated by GAs, differences in GAcontent, sensitivity to GAs (GA3 excepted), or GA metabolism areunlikely to be the controlling factor in determining the differences seen ingrowth rate between the two ecotypes under the controlled environmentconditionsof this study. Nevertheless, further study is warranted especially underconditions where environmental factors may favour a GA:ethylene interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号