首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of six respiratory chain inhibitors (amytal, rotenone, piericidin A, antimycin A, 2-N-heptyl-4-hydroxyquinoline N-oxide, and cyanide) on mitochondrial ATPase activity have been investigated. Each of these compounds inhibited the ATPase activity of intact mitochondria induced by uncoupling agents, ionophores, or alterations in ionic composition; the effects were variable depending upon the type and concentration of uncoupling agents or inhibitors utilized. The ATPase activity of sonicated submitochondrial particles was also diminished by respiratory inhibitors, but the isolated ATPase enzyme was not affected. We conclude from these results that these respiratory inhibitors interfere with the energy coupling mechanism of oxidative phosphorylation. The experimental observations tend to support the “chemical” theory, and appear to be less consistent with the “chemiosmotic” hypothesis of oxidative phosphorylation.  相似文献   

2.
Escherichia coli ribosomal protein S1 plays a central role in initiation of protein synthesis, perhaps via participation in the binding of messenger RNA to the ribosome. S1 protein has two nucleic acid binding sites with very different properties: site I binds either single-stranded DNA or RNA, while site II binds single-stranded RNA only (Draper et al., 1977). The nucleic acid binding properties of these sites have been explored using the quenching of intrinsic protein fluorescence which results from binding of oligo- and polynucleotides, and are reported in this and the accompanying paper (Draper &; von Hippel, 1978).Site I has been studied primarily using DNA oligomers and polymers, and has been found to have the following properties. (1) The intrinsic binding constant (K) of site I for poly(dA) and poly(dC) is ~3 × 106m?1 at 0.12 m-Na+, and the site size (n, the number of nucleotide residues covered per S1 bound) is 5.1 ± 1.0 residues. (2) Binding of site I to polynucleotides is non-co-operative. (3) The K value for binding of S1 to single-stranded polynucleotides is ~103 larger than K for binding to double-stranded polynucleotides, meaning that S1 (via site I) is a potential “melting” or “double-helix destabilizing” protein. (4) The dependence of log K on log [Na+] is linear, and analysis of the data according to Record et al. (1976) shows that two basic residues in site I form charge-charge interactions with two DNA phosphates. In addition, a major part of the binding free energy of site I with the nucleic acid chain appears to involve non-electrostatic interactions. (5) Oligonucleotides bound in site II somewhat weaken the binding affinity of site I. (6) Binding affin is virtually independent of base and sugar composition of the nucleic acid ligand; in fact, the total absence of the base appears to have little effect on the binding, since the association constant for 2′-deoxyribose 5′-phosphate is approximately the same as that for dAMP or dCMP. (7) Two molecules of d(ApA) can bind to site I, suggesting the presence of two “subsites” within site I. (8) Iodide quenching experiments with S1-oligonucleotide complexes show differential exposure of tryptophans in and near the subsites of site I, depending upon whether neither, one, or both subsites are complexed with an oligonucleotide.  相似文献   

3.
Following supercooling prompt chlorophyll fluorescence and delayed fluorescence from leaves undergo transients simultaneous with the freezing point exotherm. The degree of supercooling and, hence, the temperature at which the exotherm occurs is dependent upon the leaf water content.Winter wheat leaves (Triticum aestivum L.) that had the lowest water content (hardened “Kharkov”) supercooled to a greater degree than those leaves with a higher water content (hardened “Rescue” and unhardened “Kharkov” or “Rescue”).Seeding the leaves with ice increased the temperature at which the exotherm occurred and decreased the difference between varities but not between hardened and unhardened material. Our results suggest that freeze-avoidance via supercooling may be one mechanism in winter wheat for withstanding subfreezing temperatures.  相似文献   

4.
By using the mass-spectrometry method, the oxidative modifications of the fibrinogen Aα, Bβ, and γ polypeptide chains induced by its oxidation have been studied. The αC-region has been proven to be the most vulnerable target for the oxidizer (ozone) as compared with the other structural elements of the Aα chain. The Bβ chain mapping shows that the oxidative sites are localized within all the structural elements of the chain in which the β-nodule exhibits high susceptibility to oxidation. The γ chains are the least vulnerable to the oxidizer action. The results obtained demonstrate convincingly that the self-assembly centers dealing with interactions of knob “A”: hole “a” are not involved in oxidative modification. It is concluded that the numerous oxidative sites revealed are mainly responsible for inhibiting lateral aggregation of protofibrils. The part of amino acid residues subjected to oxidation is supposed to carry out the antioxidant function.  相似文献   

5.
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers.  相似文献   

6.
Did respiration or photosynthesis come first?   总被引:3,自引:0,他引:3  
The similarity of the mechanisms in photosynthetic and in oxidative phosphorylation suggests a common origin (conversion hypothesis). It is proposed that an early form of electron flow with oxidative phosphorylation (“prerespiration”), to therminal electron acceptors available in a reducing biosphere, was supplemented by a photocatalyst capable of a redox reaction. In this way, cyclic photophosphorylation arose. Further stages in evolution were reverse electron flow, powered by ATP, to make NADH as a reductant for CO2, and subsequently noncyclic electron flow. These processes concomitantly provided the oxidants indispensable for full development of oxidative phosphorylation, i.e. for normal respiration: sulphate, O2, and, with participation of the nitrificants, nitrite and nitrate. Thus prerespiration preceded photosynthesis, and this preceded respiration. It is also suggested that nonredox photoprocesses of the Halobacterium type are not part of the mainstream of bioenergetic evolution. They do not lead to photoprocesses with electron flow.  相似文献   

7.
The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and β-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of α-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two conditions, monitoring the changes of the mean residue ellipticity measured at 222 nm as a function of temperature, between 20 and 95 °C. The thermodynamic analysis of the denaturation curves shows that phosphorylation of the protein induces a state of lower stability of R domain, characterized by a lower transition temperature, and by a smaller Gibbs free energy difference between the native and the unfolded states.  相似文献   

8.
A protein-bound 32P-labeled substance previously detected in rat-liver mitochondria under conditions chosen to reveal possible energy-rich intermediates of oxidative phosphorylation has been identified as 32P-γ-labeled ATP. The acid-precipitable protein-bound ATP (E·ATP) appears to equilibrate with medium ATP at the time of acid denaturation. After acid denaturation, the 32P label of E·ATP is only slowly removed by exposure to perchloric acid containing ATP or PPi. E·ATP is discharged in aurovertin-inhibited mitochondria during a short exposure to an uncoupler of oxidative phosphorylation in the absence of any change in the endogenous ATP pool. Under optimal energy conditions about one E·ATP is observed per two cytochrome oxidase. The results are consistent with the binding of ATP at the coupling sites of oxidative phosphorylation.  相似文献   

9.
The readdition of an essential nutrient to starved, fermenting cells of the yeast Saccharomyces cerevisiae triggers rapid activation of the protein kinase A (PKA) pathway. Trehalase is activated 5–10-fold within minutes and has been used as a convenient reporter for rapid activation of PKA in vivo. Although trehalase can be phosphorylated and activated by PKA in vitro, demonstration of phosphorylation during nutrient activation in vivo has been lacking. We now show, using phosphospecific antibodies, that glucose and nitrogen activation of trehalase in vivo is associated with phosphorylation of Ser21 and Ser83. Unexpectedly, mutants with reduced PKA activity show constitutive phosphorylation despite reduced trehalase activation. The same phenotype was observed upon deletion of the catalytic subunits of yeast protein phosphatase 2A, suggesting that lower PKA activity causes reduced trehalase dephosphorylation. Hence, phosphorylation of trehalase in vivo is not sufficient for activation. Deletion of the inhibitor Dcs1 causes constitutive trehalase activation and phosphorylation. It also enhances binding of trehalase to the 14-3-3 proteins Bmh1 and Bmh2, suggesting that Dcs1 inhibits by preventing 14-3-3 binding. Deletion of Bmh1 and Bmh2 eliminates both trehalase activation and phosphorylation. Our results reveal that trehalase activation in vivo is associated with phosphorylation of typical PKA sites and thus establish the enzyme as a reliable read-out for nutrient activation of PKA in vivo.  相似文献   

10.
We have found that, contrary to naïve intuition, the degree of operational reversibility in the thermal denaturation of lipase from Thermomyces lanuginosa (an important industrial enzyme) in urea solutions is maximum when the protein is heated several degrees above the end of the temperature‐induced denaturation transition. Upon cooling to room temperature, the protein seems to reach a state with enzymatic activity similar to that of the initial native state, but with higher denaturation temperature and radically different behavior in terms of susceptibility to irreversible denaturation. These results show that patterns of operational reversibility/irreversibility in protein denaturation may be more complex than the often‐taken‐for‐granted, two‐situation classification (reversible vs. irreversible). Furthermore, they are consistent with the possibility of existence of different native or native‐like states separated by high kinetic barriers under native conditions and they suggest experimental procedures to reach and study such “alternative” native states. Proteins 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

11.
Targeted activation of highly ordered and distributed metal sites in nanoporous frameworks is a generic strategy to develop high‐performance catalysts. The key challenge is to achieve such activation without damaging the frameworks. Here it is demonstrated that atmospheric‐pressure low‐temperature plasma generated in air improve catalytic properties of an Fe/Co bimetallic cyanide framework through the specific “soft” incorporation of reactive oxygen species without affecting the framework structure. The bonding and oxidative states of the high‐density catalytic metal sites in the framework are modified while the nanoporous nature of the framework is retained, which leads to superior catalytic performance for the oxygen evolution reaction at high current densities close to the operation conditions of commercial alkaline electrolyzers.  相似文献   

12.
The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a “dry season” and a “rainy season”. A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/Penicillium."  相似文献   

13.
De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the “sink” stage to the “source” stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.  相似文献   

14.
High-throughput sequencing of the amplicon gene library revealed variations in the population structure of clover rhizobia (Rhizobium leguminosarum bv. trifolii) upon transition from soil into the root nodules of the host plant (Trifolium hybridum). Analysis of rhizobial diversity using the nodA gene revealed 3258 and 1449 nucleotide sequences (allelic variants) for the soil and root nodule population, respectively. They were combined into 29 operational taxonomic units (OTU) according to the 97% identity level; 24 OTU were found in the soil population, 12 were present in the root nodule population, and 7 were common. The predominant OTE13 (77.4 and 91.5% of the soil and root nodule populations, respectively) contained 155 and 200 variants of the soil and root nodule populations, respectively, with the nucleotide diversity increasing significantly upon the “soil → root” transition. The “moving window” approach was used to reveal the sites of the nodA gene in which polymorphism, including that associated with increased frequency of non-synonymous substitution frequency, increased sharply upon transition from soil into root nodules. PCR analysis of the IGS genotypes of individual strains revealed insignificant changes in rhizobial diversity upon transition from soil into root nodules. These results indicate that acceleration of rhizobial evolution in the course of symbiosis may be associated with development of highly polymorphic virulent subpopulations subjected to directional selection in the “plant-soil” system.  相似文献   

15.
Photochemical crosslinking studies on two formylmethionine tRNAs of Escherichia coli are consistent with the hypothesis that the role of 7-methylguanosine is to stabilize a tertiary structure of tRNA in which the “extra” loop is folded over so as to be close to the 4-thiouridine region of the molecule. In tRNAfmet 3, which differs from tRNAfmet 1 only by substitution of an adenosine for the 7-methylguanosine in the “extra” loop, crosslinking was virtually abolished when the tRNA was placed in 40 mm Na+, whereas tRNAfmet 1 in 40 mm Na+ was crosslinked to 95% of the maximum extent observed for both tRNAs in Mg2+. Even in Mg2+, a difference in structure between the two tRNAs could be detected by means of a two-fold decrease in the rate of crosslinking in tRNAfmet 3 as compared to tRNAfmet 1. Comparison of crosslinking in the native and metastable denatured forms of tRNATrp of E. coli revealed that these structures also differ with respect to the orientation and/or distance between 4-thiouridine (8) and cytidine (13), since denaturation abolished crosslinking. However, separation of these two residues is not obligatory for denaturation, since crosslinked tRNATrp could still be denatured. A 30% difference in fluorescence between the native and denatured forms of crosslinked-reduced tRNATrp infers an increase in hydrophilicity in the 4-thiouridine region upon denaturation.  相似文献   

16.
We have studied the electrical conductivity of NaDNA solutions under “saltfree” conditions at temperatures well below the melting point of DNA, using radio-frequency dielectric and noise measurements. A conductivity discontinuity is observed at a temperature well below that at which the usual denaturation processes and trans conformation may commence. The radio-frequency permittivity also exhibits a discontinuity at the same temperature. For the premelting phase, the conductivity versus temperature curves consist of two linear regions with a change in slope occurring at 23°C. This effect is related to the behavior of the ionic sheath covering the DNA macromolecule. The activation energy of the alternative current conductivity as well as that the equivalent noise conductivity results as 3.11 kcal/mole below and 4.08 kcal/mole.  相似文献   

17.
18.
19.
J W Longworth 《Biopolymers》1966,4(10):1131-1148
Previous fluorescence and phosphorescence studies of aromatic model compounds have been extended to polymers: “atactic” and isotactic polystyrene, seven aromatic poly-(amino acids), and two proteins. We have confirmed previous observations that both forms of polystyrene exhibit strong excimer fluorescence emission at room temperature but not at 77°K. Of the poly(amino acids) (all observed in helix-supporting solvents), poly-L -phenylalanine, poly(α-benzyl-L -aspartic acid), and poly-1-benzyl-L -histidine likewise show excimer emission at room temperature but not at 77°K., while poly-L -tyrosine, poly-L -tryptophan, poly(γ-benzyl-L -glutamic acid), and poly-S-benzyl-L -cysteine exhibit no excimer emission at either temperature. The aromatic residues of bovine serum albumin exhibit only “normal” fluorescence, but, lysozyme appears to be unique among proteins in showing excimer-like tryptophan emission in the native state; its luminescence becomes “normal” upon denaturation. It appears very probable that none of these polymers has a ground-state conformation in which the aromatic groups have face-to-face orientations appropriate for excimer interaction. It is concluded that at room temperature absorption of light can cause local “melting” of regular (usually helical) structures and thus, in some polymers, permit the attainment of a face-to-face arrangement of aromatic rings within the radiative lifetime of their excited singlet states. In certain other polymers (for reasons not clear at present), and in all polymers at 77°K., this does not occur. This concept is extended to provide a bettor basis for understanding the mechanism of formation of the photodimer of thy mine in irradiated DNA.  相似文献   

20.
1. The ability of 4,6-dinitrocresol and eight other substituted phenols to stimulate oxygen uptake and inhibit phosphorylation by a cell-free particulate system from unfertilized Arbacia eggs has been determined. Five of those agents can produce both stimulation of oxygen consumption and inhibition of phosphorylation; one inhibits both oxygen consumption and phosphorylation; and two have no effect on either oxygen consumption or phosphorylation. In every case the effects of these substituted phenols upon the cell-free particulate systems parallel those upon oxygen consumption and cleavage in the intact fertilized Arbacia eggs. 2. The data suggest that energy for cleavage of the Arbacia egg is provided at least in part by oxidative phosphorylation and that substituted phenols may block cleavage by interfering with generation and transfer of high-energy phosphate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号