首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   

2.
Nanofibers consisting of the bulk heterojunction organic photovoltaic (BHJ–OPV) electron donor–electron acceptor pair poly(3‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) are produced through a coaxial electrospinning process. While P3HT:PCBM blends are not directly electrospinnable, P3HT:PCBM‐containing fibers are produced in a coaxial fashion by utilizing polycaprolactone (PCL) as an electrospinnable sheath material. Pure P3HT:PCBM fibers are easily obtained after electrospinning by selectively removing the PCL sheath with cyclopentanone (average diameter 120 ± 30 nm). These fibers are then incorporated into the active layer of a BHJ–OPV device, which results in improved short‐circuit current densities, fill factors, and power‐conversion efficiencies (PCE) as compared to thin‐film devices of identical chemical composition. The best‐performing fiber‐based devices exhibit a PCE of 4.0%, while the best thin‐film devices have a PCE of 3.2%. This increase in device performance is attributed to the increased in‐plane alignment of P3HT polymer chains on the nanoscale, caused by the electrospun fibers, which leads to increased optical absorption and subsequent exciton generation. This methodology for improving device performance of BHJ–OPVs could also be implemented for other electron donor–electron acceptor systems, as nanofiber formation is largely independent of the PV material.  相似文献   

3.
Periodically patterned zinc oxide nanorod (P‐ZnO NR) layers are directly prepared from a pre‐patterned ZnO seed layer using a polydimethylsiloxane (PDMS) elastomeric stamp and then applied in inverted organic photovoltaic devices (IOPVs). The IOPV is assembled with a hydrothermally grown zinc oxide nanorod patterns with a (100) preferential crystal orientation as an electron transport buffer layer (ETBL) and photoactive bilayer consisting of methacylate end‐functionalized poly(3‐hexylthiophene) (P3HT‐MA), phenyl‐C60‐butyric acid methyl ester (PC60BM) and indene‐C60 bis‐adduct (IC60BA). In te IOPVs, the P‐ZnO NR is found to induce efficient light harvesting and the photocrosslinkable P3HTs afford solution‐processed bilayer architecture in IOPVs to show improved device stability and performance (PCEmax= 5.95%), as the bilayered structure allowed direct exciton splitting, thus reducing the charge recombination.  相似文献   

4.
The use of processing additives has emerged as a powerful approach for the optimization of active layer performance in organic photovoltaic devices. However, definitive physical mechanisms explaining the impact of additives have not yet been determined. To elucidate the role of additives, we have studied the time evolution of structure in polymer‐fullerene films blade‐coated from additive containing solutions using in‐situ spectroscopic ellipsometry and UV–vis transmission. Additives that are poor solvents for poly(3‐hexylthiophene) (P3HT), such as 1,8‐octanedithiol, and additives that are good solvents for P3HT, such as 1‐chloronapthalene, both promote improved polymer order, phase segregation, and device performance. Regardless of the presence or type of additive, the polymer order develops under conditions of extreme supersaturation. Additives, regardless of whether they are solvents for P3HT, promote earlier polymer aggregation compared to additive ‐ free solutions presumably by degrading the solvent quality. We find evidence that the details of the final film morphology may be linked to the influence of the substrate and long‐time film plasticization in the cases of the non‐solvent and solvent respectively.  相似文献   

5.
Organic solar cells that are free of burn‐in, the commonly observed rapid performance loss under light, are presented. The solar cells are based on poly(3‐hexylthiophene) (P3HT) with varying molecular weights and a nonfullerene acceptor (rhodanine‐benzothiadiazole‐coupled indacenodithiophene, IDTBR) and are fabricated in air. P3HT:IDTBR solar cells light‐soaked over the course of 2000 h lose about 5% of power conversion efficiency (PCE), in stark contrast to [6,6]‐Phenyl C61 butyric acid methyl ester (PCBM)‐based solar cells whose PCE shows a burn‐in that extends over several hundreds of hours and levels off at a loss of ≈34%. Replacing PCBM with IDTBR prevents short‐circuit current losses due to fullerene dimerization and inhibits disorder‐induced open‐circuit voltage losses, indicating a very robust device operation that is insensitive to defect states. Small losses in fill factor over time are proposed to originate from polymer or interface defects. Finally, the combination of enhanced efficiency and stability in P3HT:IDTBR increases the lifetime energy yield by more than a factor of 10 when compared with the same type of devices using a fullerene‐based acceptor instead.  相似文献   

6.
The high thermal stability and facile synthesis of CsPbI2Br all‐inorganic perovskite solar cells (AI‐PSCs) have attracted tremendous attention. As far as electron‐transporting layers (ETLs) are concerned, low temperature processing and reduced interfacial recombination centers through tunable energy levels determine the feasibility of the perovskite devices. Although the TiO2 is the most popular ETL used in PSCs, its processing temperature and moderate electron mobility hamper the performance and feasibility. Herein, the highly stable, low‐temperature processed MgZnO nanocrystal‐based ETLs for dynamic hot‐air processed Mn2+ incorporated CsPbI2Br AI‐PSCs are reported. By holding its regular planar “n–i–p” type device architecture, the MgZnO ETL and poly(3‐hexylthiophene‐2,5‐diyl) hole transporting layer, 15.52% power conversion efficiency (PCE) is demonstrated. The thermal‐stability analysis reveals that the conventional ZnO ETL‐based AI‐PSCs show a serious instability and poor efficiency than the Mg2+ modified MgZnO ETLs. The photovoltaic and stability analysis of this improved photovoltaic performance is attributed to the suitable wide‐bandgap, low ETL/perovskite interface recombination, and interface stability by Mg2+ doping. Interestingly, the thermal stability analysis of the unencapsulated AI‐PSCs maintains >95% of initial PCE more than 400 h at 85 °C for MgZnO ETL, revealing the suitability against thermal degradation than conventional ZnO ETL.  相似文献   

7.
Significantly increased power conversion efficiency (PCE) of polymer solar cells (PSCs) is achieved by applying a plasmonic enhanced light trapping strategy to a low bandgap conjugated polymer, poly(indacenodithiophene‐ co‐phananthrene‐quinoxaline) (PIDT‐PhanQ) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) based bulk‐heterojunction (BHJ) system. By doping both the rear and front charge‐selecting interfacial layers of the device with different sizes of Au NPs, the PCE of the devices is improved from 6.65% to 7.50% (13% enhancement). A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of low bandgap polymers in PSCs.  相似文献   

8.
The record efficiency of the state‐of‐the‐art polymer solar cells (PSCs) is rapidly increasing, due to the discovery of high‐performance photoactive donor and acceptor materials. However, strong questions remain as to whether such high‐efficiency PSCs can be produced by scalable processes. This paper reports a high power conversion efficiency (PCE) of 13.5% achieved with single‐junction ternary PSCs based on PTB7‐Th, PC71BM, and COi8DFIC fabricated by slot‐die coating, which shows the highest PCE ever reported in PSCs fabricated by a scalable process. To understand the origin of the high performance of the slot‐die coated device, slot‐die coated photoactive films and devices are systematically investigated. These results indicate that the good performance of the slot‐die PSCs can be due to a favorable molecule‐structure and film‐morphology change by introducing 1,8‐diiodooctane and heat treatment, which can lead to improved charge transport with reduced carrier recombination. The optimized condition is then used for the fabrication of large‐area modules and also for roll‐to‐roll fabrication. The slot‐die coated module with 30 cm2 active‐area and roll‐to‐roll produced flexible PSC has shown 8.6% and 9.6%, respectively. These efficiencies are the highest in each category and demonstrate the strong potential of the slot‐die coated ternary system for commercial applications.  相似文献   

9.
A water‐soluble cationic polythiophene derivative, poly[3‐(6‐{4‐tert‐butylpyridiniumyl}‐hexyl)thiophene‐2,5‐diyl] [P3(TBP)HT], is combined with anionic poly(3,4‐ethylenedioxythiophene):poly(p‐styrenesulfonate) (PEDOT:PSS) on indium tin oxide (ITO) substrates via electrostatic layer‐by‐layer (eLbL) assembly. By varying the number of eLbL layers, the electrode's work function is precisely controlled from 4.6 to 3.8 eV. These polymeric coatings are used as cathodic interfacial modifiers for inverted‐mode organic photovoltaics that incorporate a photoactive layer composed of either poly[(3‐hexylthiophene)‐2,5‐diyl] (P3HT) and the fullerene acceptor [6,6‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or the low bandgap polymer [poly({4,8‐di(2‐ethylhexyloxyl)benzo[1,2‐b:4,5‐b′]dithiophene}‐2,6‐diyl)‐alt‐({5‐octylthieno[3,4‐c]pyrrole‐4,6‐dione}‐1,3‐diyl) (PBDTTPD)] and the electron acceptor [6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM)]. The power conversion efficiency (PCE) of the resulting photovoltaic device is dependent on the composition of the eLbL‐assembled interface and permits the fabrication of devices with efficiencies of 3.8% and 5.6% for P3HT and PBDTTPD donor polymers, respectively. Notably, these devices demonstrate significant stability with a P3HT:PC61BM system maintaining 83% of its original PCE after 1 year of storage and a PBDTTPD:PC71BM system maintaining 97% of its original PCE after over 1000 h of storage in air, according to the ISOS‐D‐1 shelf protocol.  相似文献   

10.
To realize high power conversion efficiencies (PCEs) in green‐solvent‐processed all‐polymer solar cells (All‐PSCs), a long alkyl chain modified perylene diimide (PDI)‐based polymer acceptor PPDIODT with superior solubility in nonhalogenated solvents is synthesized. A properly matched PBDT‐TS1 is selected as the polymer donor due to the red‐shifted light absorption and low‐lying energy level in order to achieve the complementary absorption spectrum and matched energy level between polymer donor and polymer acceptor. By utilizing anisole as the processing solvent, an optimal efficiency of 5.43% is realized in PBDT‐TS1/PPDIODT‐based All‐PSC with conventional configuration, which is comparable with that of All‐PSCs processed by the widely used binary solvent. Due to the utilization of an inverted device configuration, the PCE is further increased to over 6.5% efficiency. Notably, the best‐performing PCE of 6.58% is the highest value for All‐PSCs employing PDI‐based polymer acceptors and green‐solvent‐processed All‐PSCs. The excellent photovoltaic performance is mainly attributed to a favorable vertical phase distribution, a higher exciton dissociation efficiency (Pdiss) in the blend film, and a higher electrode carrier collection efficiency. Overall, the combination of rational molecular designing, material selection, and device engineering will motivate the efficiency breakthrough in green‐solvent‐processed All‐PSCs.  相似文献   

11.
Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high‐performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a‐SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double‐layer structure of TiO2 compact layer (c‐TiO2) and a‐SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a‐SnO2/c‐TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c‐TiO2 based device. Moreover, the modified device demonstrates a maximum open‐circuit voltage (Voc) of 1.223 V with 387 mV loss in potential, which is among the highest reported value for PSCs with negligible hysteresis. The stability results show that the device on c‐TiO2/a‐SnO2 retains about 91% of its initial PCE value after 500 h light illumination, which is higher than pure c‐TiO2 (67%) based devices. Interestingly, using a‐SnO2/c‐TiO2 ETL the PCE loss was only 10% of initial value under continuous UV light illumination after 30 h, which is higher than that of c‐TiO2 based device (28% PCE loss).  相似文献   

12.
Charge transport layers play an important role in determining the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, it has proven challenging to produce thin and compact charge transport layers via solution processing techniques. Herein, a hot substrate deposition method capable of improving the morphology of high‐coverage hole‐transport layers (HTLs) and electron‐transport layers (ETLs) is reported. PSC devices using HTLs deposited on a hot substrate show improvement in the open‐circuit voltage (Voc) from 1.041 to 1.070 V and the PCE from 17.00% to 18.01%. The overall device performance is then further enhanced with the hot substrate deposition of ETLs as the Voc and PCE reach 1.105 V and 19.16%, respectively. The improved performance can be explained by the decreased current leakage and series resistance, which are present in PSCs with rough and discontinuous HTLs and ETLs.  相似文献   

13.
The performance of bulk heterojunction solar cells made from blends of a non‐fullerene acceptor, N,N′‐bis(2‐ethylhexyl)‐2,6‐bis(5″‐hexyl‐[2,2′;5′,2″]terthiophen‐5yl)‐1,4,5,8‐naphthalene diimide (NDI‐3TH), and poly(3‐hexylthiophene) (P3HT) donor is enhanced 10‐fold by using a processing additive in conjunction with an electron‐blocking and a hole‐blocking buffer layers. The power conversion efficiency of P3HT:NDI‐3TH solar cells improves from 0.14% to 1.5% by using a processing additive (1,8‐diiodooctane) at an optimum concentration of 0.2 vol%, which is far below the 2‐3 vol% optimum concentrations found in polymer/fullerene systems. TEM and AFM imaging show that the size and connectivity of the NDI‐3TH domains in the phase‐separated P3HT:NDI‐3TH blends vary strongly with the concentration of the processing additive. These results demonstrate, for the first time, that processing additives can be effective in the optimization of the morphology and performance of bulk heterojunction polymer solar cells based on non‐fullerene acceptors.  相似文献   

14.
Formamidinium (FA)‐based 3D perovskite solar cells (PSCs) have been widely studied and they show reduced bandgap, enhanced stability, and improved efficiency compared to MAPbI3‐based devices. Nevertheless, the FA‐based spacers have rarely been studied for 2D Ruddlesden–Popper (RP) perovskites, which have drawn wide attention due to their enormous potential for fabricating efficient and stable photovoltaic devices. Here, for the first time, FA‐based derivative, 2‐thiopheneformamidinium (ThFA), is successfully synthesized and employed as an organic spacer for 2D RP PSCs. A precursor organic salts‐assisted crystal growth technique is further developed to prepare high quality 2D (ThFA)2(MA)n?1PbnI3n+1 (nominal n = 3) perovskite films, which shows preferential vertical growth orientations, high charge carrier mobilities, and reduced trap density. As a result, the 2D RP PSCs with an inverted planar p‐i‐n structure exhibit a dramatically improved power conversion efficiency (PCE) from 7.23% to 16.72% with negligible hysteresis, which is among the highest PCE in 2D RP PSCs with low nominal n‐value of 3. Importantly, the optimized 2D PSCs exhibit a dramatically improved stability with less than 1% degradation after storage in N2 for 3000 h without encapsulation. These findings provide an effective strategy for developing FA‐based organic spacers toward highly efficient and stable 2D PSCs.  相似文献   

15.
Polymer solar cells (PSCs) are fabricated without solvent additives using a low‐bandgap polymer, PBDTTT‐C‐T, as the donor and [6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PC61BM) as the acceptor. Donor‐acceptor blend and layer‐by‐layer (LL) solution process are used to form active layers. Relative to the blend devices, the LL devices exhibit stronger absorption, better vertical phase separation, higher hole and electron mobilities, and better charge extraction at correct electrodes. As a result, after thermal annealing the LL devices exhibit an average power conversion efficiency (PCE) of 6.86%, which is much higher than that of the blend devices (4.31%). The best PCE of the LL devices is 7.13%, which is the highest reported for LL processed PSCs and among the highest reported for PC61BM‐based single‐junction PSCs.  相似文献   

16.
Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole‐transporting‐layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr3 perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally‐graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near‐ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded‐heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr3‐nanocrystals modification and with CsPbBr3‐nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.  相似文献   

17.
The adsorption of self‐assembled monolayers (SAMs) on metal oxide surfaces is a promising route to control electronic characteristics and surface wettability. Here, arylphosphonic acid derivatives are used to modulate the surface properties of vertically oriented ZnO nanowire arrays. Arylphosphonate‐functionalized ZnO nanowires are incorporated into hybrid organic‐inorganic solar cells in which infiltrated poly(3‐hexylthiophene) (P3HT) serves as the polymer donor. Strong correlations between device short‐circuit current density (J sc) and power conversion efficiencies (PCEs) with ZnO surface functionalization species are observed and a weak correlation in the open‐circuit voltage (V oc) is observed. Inverted solar cells fabricated with these treated interfaces exhibit PCEs as high as 2.1%, primarily due to improvements in J sc. Analogous devices using untreated ZnO arrays having efficiencies of 1.6%. The enhancement in J sc is attributed to surface passivation of ZnO by SAMs and enhanced wettability from P3HT, which improve charge transfer and reduce carrier recombination at the organic‐inorganic interface in the solar cells.  相似文献   

18.
Perovskite solar cells (PSCs) have been emerging as a breakthrough photovoltaic technology, holding unprecedented promise for low‐cost, high‐efficiency renewable electricity generation. However, potential toxicity associated with the state‐of‐the‐art lead‐containing PSCs has become a major concern. The past research in the development of lead‐free PSCs has met with mixed success. Herein, the promise of coarse‐grained B‐γ‐CsSnI3 perovskite thin films as light absorber for efficient lead‐free PSCs is demonstrated. Thermally‐driven solid‐state coarsening of B‐γ‐CsSnI3 perovskite grains employed here is accompanied by an increase of tin‐vacancy concentration in their crystal structure, as supported by first‐principles calculations. The optimal device architecture for the efficient photovoltaic operation of these B‐γ‐CsSnI3 thin films is identified through exploration of several device architectures. Via modulation of the B‐γ‐CsSnI3 grain coarsening, together with the use of the optimal PSC architecture, planar heterojunction‐depleted B‐γ‐CsSnI3 PSCs with power conversion efficiency up to 3.31% are achieved without the use of any additives. The demonstrated strategies provide guidelines and prospects for developing future high‐performance lead‐free PVs.  相似文献   

19.
In bulk heterojunction (BHJ) polymeric organic solar cells (OSCs), the use of processing additives in the material formulation has emerged as a promising, cost‐effective, and widely applicable method for optimizing the phase separation between the donor (D) and acceptor (A) materials, thus increasing their efficiency. So far, however, there has been no systematic approach for identifying suitable processing additives for a given D:A system. A method based on the Hansen solubility parameters (HSPs) is proposed for guiding the selection of processing additives for a given D:A combination. The method is applied to the archetypical poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) system. The HSPs of these materials are determined and used to define a set of numerical criteria that need to be satisfied by a processing additive in order for it to be effective in realizing a higher efficiency OSC. Applying the selection criteria results in the identification of three novel processing additives. OSCs made of these formulations demonstrate an increase in their short‐circuit current density (JSC) and power conversion efficiency (PCE). These results demonstrate the efficiency of these novel processing additives and show that the HSPs represent a useful tool to determine and explore new types of processing additives for BHJ‐OSCs.  相似文献   

20.
Stability has become the main obstacle for the commercialization of perovskite solar cells (PSCs) despite the impressive power conversion efficiency (PCE). Poor crystallization and ion migration of perovskite are the major origins of its degradation under working condition. Here, high‐performance PSCs incorporated with pyridine‐2‐carboxylic lead salt (PbPyA2) are fabricated. The pyridine and carboxyl groups on PbPyA2 can not only control crystallization but also passivate grain boundaries (GBs), which result in the high‐quality perovskite film with larger grains and fewer defects. In addition, the strong interaction among the hydrophobic PbPyA2 molecules and perovskite GBs acts as barriers to ion migration and component volatilization when exposed to external stresses. Consequently, superior optoelectronic perovskite films with improved thermal and moisture stability are obtained. The resulting device shows a champion efficiency of 19.96% with negligible hysteresis. Furthermore, thermal (90 °C) and moisture (RH 40–60%) stability are improved threefold, maintaining 80% of initial efficiency after aging for 480 h. More importantly, the doped device exhibits extraordinary improvement of operational stability and remains 93% of initial efficiency under maximum power point (MPP) tracking for 540 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号