首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Filamentous fungi are known as producers of a large array of diverse secondary metabolites (SMs) that aid in securing their environmental niche. Here, we demonstrated that the SMs have an additional role in fungal defence against other fungi: Trichoderma guizhouense, a mycoparasite, is able to antagonize Fusarium oxysporum f. sp. cubense race 4 (Foc4) by forming aerial hyphae that kill the host with hydrogen peroxide. At the same time, a gene cluster comprising two polyketide synthases is strongly expressed. Using functional genetics, we characterized this cluster and identified its products as azaphilones (termed as trigazaphilones). The trigazaphilones were found lacking of antifungal toxicity but exhibited high radical scavenging activities. The antioxidant property of trigazaphilones was in vivo functional under various tested conditions of oxidative stress. Thus, we conclude that the biosynthesis of trigazaphilones serves as a complementary antioxidant mechanism and defends T. guizhouense against the hydrogen peroxide that it produces to combat other fungi like Foc4.  相似文献   

2.
3.
Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long‐term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3 h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low‐mass antioxidants, ROS‐scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes.  相似文献   

4.
Selenoprotein synthesis is conserved from bacteria to man. It involves the differential decoding of the UGA stop codon as selenocysteine. The proteomes of both prokaryotes and eukaryotes, with the exception of yeast, contain only few selenoproteins. This low number is explained by a counterselection of readily oxidized selenocysteine after the introduction of oxygen into the atmosphere and the need to conserve selenoenzymes that control redox homeostasis of cells. Lack of selenoprotein synthesis in vertebrates impairs the oxidative stress defence and causes lethality. Here we show that Drosophila mutants that lack the translation elongation factor SelB/eEFsec fail to decode the UGA codon as selenocysteine, but they are viable and fertile. Oxidative stress responses and the lifespan of these flies are not affected. Protecting cells from oxidative stress can therefore not account for the selection pressure that conserves selenoprotein biosynthesis during the course of evolution.  相似文献   

5.
Content of reactive oxygen species (ROS): O2*-, H2O2 and OH* as well as activities of antioxidant enzymes: superoxide dismutase (SOD), guaiacol peroxidase (POX) and catalase (CAT) were studied in leaves of Arabidopsis thaliana ecotype Columbia, treated with Cu excess (0, 5, 25, 30, 50, 75, 100, 150 and 300 microM). After 7 days of Cu action ROS content and the activity of SOD and POX increased, while CAT activity decreased in comparison with control. Activities of SOD, POX and CAT were correlated both with Cu concentration (0-75 microM) in the growth medium and with OH* content in leaves. Close correlation was also found between OH* content and Cu concentration. Oxidative stress in A. thaliana under Cu treatment expressed in elevated content of O2*-, H2O2 and OH* in leaves. To overcome it very active the dismutase- and peroxidase-related (and not catalase-related, as in other plants) ROS scavenging system operated in A. thaliana. Visual symptoms of phytotoxicity: chlorosis, necrosis and violet colouring of leaves as well as a reduction of shoot biomass occurred in plants.  相似文献   

6.
Mitochondrial dysfunction is implicated in age‐related degenerative disorders such as Alzheimer's disease (AD). Maintenance of mitochondrial dynamics is essential for regulating mitochondrial function. Aβ oligomers (AβOs), the typical cause of AD, lead to mitochondrial dysfunction and neuronal loss. AβOs have been shown to induce mitochondrial fragmentation, and their inhibition suppresses mitochondrial dysfunction and neuronal cell death. Oxidative stress is one of the earliest hallmarks of AD. Cyclin‐dependent kinase 5 (Cdk5) may cause oxidative stress by disrupting the antioxidant system, including Prx2. Cdk5 is also regarded as a modulator of mitochondrial fission; however, a precise mechanistic link between Cdk5 and mitochondrial dynamics is lacking. We estimated mitochondrial morphology and alterations in mitochondrial morphology‐related proteins in Neuro‐2a (N2a) cells stably expressing the Swedish mutation of amyloid precursor protein (APP), which is known to increase AβO production. We demonstrated that mitochondrial fragmentation by AβOs accompanies reduced mitofusin 1 and 2 (Mfn1/2) levels. Interestingly, the Cdk5 pathway, including phosphorylation of the Prx2‐related oxidative stress, has been shown to regulate Mfn1 and Mfn2 levels. Furthermore, Mfn2, but not Mfn1, over‐expression significantly inhibits the AβO‐mediated cell death pathway. Therefore, these results indicate that AβO‐mediated oxidative stress triggers mitochondrial fragmentation via decreased Mfn2 expression by activating Cdk5‐induced Prx2 phosphorylation.

  相似文献   


7.
8.
Seedlings of rice (Oryza sativa L.) cv. Pant-12 grown in sand cultures containing 200 and 400 μM NiSO4, showed a decrease in length and fresh weight of roots and shoots. Nickel was readily taken up by rice seedlings and the concentration was higher in roots than shoots. Nickel-treated seedlings showed increased rates of superoxide anion (O2 •− ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) demonstrating enhanced lipid peroxidation, and a decline in protein thiol levels indicative of increased protein oxidation compared to controls. With progressively higher Ni concentrations, non-protein thiol and ascorbate (AsA) increased, whereas the level of low-molecular-weight thiols (such as glutathione and hydroxyl-methyl glutathione), the ratio of these thiols to their corresponding disulphides, and the ratio of AsA to dehydroascorbic acid declined in the seedlings. Among the antioxidant enzymes studied, the activities of all isoforms of superoxide dismutase (Cu-Zn SOD, Mn SOD and Fe SOD), guaiacol peroxidases (GPX) and ascorbate peroxidase (APX) increased in Ni-treated seedlings, while no clear alteration in catalase activity was evident. Activity of the ascorbate-glutathione cycle enzymes monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)—significantly increased in Ni-treated seedlings. However such increase was apparently insufficient to maintain the intracellular redox balance. Results suggest that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.  相似文献   

9.
In this study we investigated the molecular mechanism by which the Orp1 (Gpx3) protein in Saccharomyces cerevisiae senses and reacts with hydrogen peroxide. Upon exposure to H(2)O(2) Orp1(Cys36) forms a disulfide-bonded complex with the C-terminal domain of the Yap1 protein (Yap1-cCRD). We used 4-nitrobenzo-2-oxa-1,3-diazole to identify a cysteine sulfenic acid (Cys-SOH) modification that forms on Cys(36) of Orp1(Cys36) upon exposure to H(2)O(2). Under similar conditions, neither Cys(82) of Orp1(Cys82) nor Cys(598) of Yap1 forms Cys-SOH. A homology-based molecular model of Orp1 suggests that the structure of the active site of Orp1 is similar to that found in mammalian selenocysteine glutathione peroxidases. Proposed active site residues Gln(70) and Trp(125) form a catalytic triad with Cys(36) in the Orp1 molecular model. The remainder of the active site pocket is formed by Phe(38), Asn(126), and Phe(127), which are evolutionarily conserved residues. We made Q70A and W125A mutants and tested the ability of these mutants to form Cys-SOH in response to H(2)O(2). Both mutants were unable to form Cys-SOH and did not form a H(2)O(2)-inducible disulfide-bonded complex with Yap1-cCRD. The pK(a) of Cys(36) was determined to be 5.1, which is 3.2 pH units lower than that of a free cysteine (8.3). In contrast, Orp1 Cys(82) (the resolving cysteine) has a pK(a) value of 8.3. The pK(a) of Cys(36) in the Q70A and W125A mutants is also 8.3, demonstrating the importance of these residues in modulating the nucleophilic character of Cys(36). Finally, we show that S. cerevisiae strains with ORP1 Q70A and W125A mutations are less tolerant to H(2)O(2) than those containing wild-type ORP1. The results of our study suggest that attempts to identify novel redox-regulated proteins and signal transduction pathways should focus on characterization of low pK(a) cysteines.  相似文献   

10.
The mechanisms that lead to the onset of organoselenium intoxication are still poorly understood. Therefore, in the present study, we investigated the effect of acute administration of 3‐methyl‐1‐phenyl‐2‐(phenylseleno)oct‐2‐en‐1‐one on some parameters of oxidative stress and on the activity of creatine kinase (CK) in different brain areas and on the behaviour in the open field test of 90‐day‐old male rats. Animals (n = 10/group) were treated intraperitoneally with a single dose of the organoselenium (125, 250 or 500 µg kg?1), and after 1 h of the drug administration, they were exposed to the open field test, and behaviour parameters were recorded. Immediately after they were euthanized, cerebral cortex, hippocampus and cerebellum were dissected for measurement of thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and CK activity. Our results showed that the dose of 500 µg kg?1 of the organoselenium increased the locomotion and rearing behaviours in the open field test. Moreover, the organochalcogen enhanced TBARS in the cerebral cortex and cerebellum and increased the oxidation of proteins (carbonyl) only in the cerebral cortex. Sulfhydryl content was reduced in all brain areas, CAT activity enhanced in the hippocampus and reduced in the cerebellum and SOD activity increased in all brain structures. The organoselenium also inhibited CK activity in the cerebral cortex. Therefore, changes in motor behaviour, redox state and energy homeostasis in rats treated acutely with organoselenium support the hypotheses that the brain is a potential target for the organochalcogen action. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.
Bacterial pathogens display versatile gene expression to adapt to changing surroundings. For example, Vibrio cholerae, the causative agent of cholera, utilizes distinct genetic programs to combat reactive oxygen species (ROS) in aquatic environments or during host infection. We previously reported that the virulence activator AphB in V. cholerae is involved in ROS resistance. Here by performing a genetic screen, we show that AphB represses ROS resistance gene ohrA, which is also repressed by another regulator, OhrR. Reduced forms of both AphB and OhrR directly bind to the ohrA promoter and repress its expression, whereas organic hydroperoxides such as cumene hydroperoxide (CHP) deactivate AphB and OhrR. OhrA is critical for V. cholerae adult mouse colonization but is dispensable when the mice are treated with antioxidants. Furthermore, similar to our previous finding that AphB and OhrR exhibit different reduction rates during the shift from oxic to anoxic environments, we found that AphB is also oxidized more slowly than OhrR under peroxide stress or exposure to oxygen. This differential regulation optimizes the expression of ohrA and contributes to V. cholerae's ability to survive in a variety of environmental niches that contain different levels of ROS.  相似文献   

14.
The biological effects of ultraviolet radiation (UV), such as DNA damage, mutagenesis, cellular aging, and carcinogenesis, are in part mediated by reactive oxygen species (ROS). The major intracellular ROS intermediate is hydrogen peroxide, which is synthesized from superoxide anion (O2) and further metabolized into the highly reactive hydroxyl radical. In this study, we examined the involvement of mitochondria in the UV‐induced H2O2 accumulation in a keratinocyte cell line HaCaT. Respiratory chain blockers (cyanide‐p‐trifluoromethoxy‐phenylhydrazone and oligomycin) and the complex II inhibitor (theonyltrifluoroacetone) prevented H2O2 accumulation after UV. Antimycin A that inhibits electron flow from mitochondrial complex III to complex IV increased the UV‐induced H2O2 synthesis. The same effect was seen after incubation with rotenone, which blocks electron flow from NADH‐reductase (complex I) to ubiquinone. UV irradiation did not affect mitochondrial transmembrane potential (ΔΨm). These data indicate that UV‐induced ROS are produced at complex III via complex II (succinate‐Q‐reductase). J. Cell. Biochem. 80:216–222, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

15.
16.
Bacteria have survived, and many have thrived, since antiquity in the presence of the highly‐reactive chalcogen—oxygen (O2). They are known to evoke intricate strategies to defend themselves from the reactive by‐products of oxygen—reactive oxygen species (ROS). Many of these detoxifying mechanisms have been extensively characterized; superoxide dismutase, catalases, alkyl hydroperoxide reductase and the glutathione (GSH)‐cycling system are responsible for neutralizing specific ROS. Meanwhile, a pool of NADPH—the reductive engine of many ROS‐combating enzymes—is maintained by metabolic enzymes including, but not exclusively, glucose‐6 phosphate dehydrogenase (G6PDH) and NADP‐dependent isocitrate dehydrogenase (ICDH‐NADP). So, it is not surprising that evidence continues to emerge demonstrating the pivotal role metabolism plays in mitigating ROS toxicity. Stemming from its ability to concurrently decrease the production of the pro‐oxidative metabolite, NADH, while augmenting the antioxidative metabolite, NADPH, metabolism is the fulcrum of cellular redox potential. In this review, we will discuss the mounting evidence positioning metabolism and metabolic shifts observed during oxidative stress, as critical strategies microbes utilize to thrive in environments that are rife with ROS. The contribution of ketoacids—moieties capable of non‐enzymatic decarboxylation in the presence of oxidants—as ROS scavengers will be elaborated alongside the metabolic pathways responsible for their homeostases. Further, the signalling role of the carboxylic acids generated following the ketoacid‐mediated detoxification of the ROS will be commented on within the context of oxidative stress.  相似文献   

17.
Oxidative stress-mediated activation of NLRP3 inflammasome in microglia is critical in the development of neurodegerative diseases such as Alzheimer's disease (AD), Parkinson disease (PD). However, the mechanism underlying oxidative stress activates NLRP3 inflammasome remains exclusive. Here we demonstrated cathepsin B (CTSB) as a regulator of the activation of NLRP3 inflammasome by H2O2·H2O2 induced IL-1β secretion in NLRP3 inflammasome-dependent manner·H2O2 treatment increased CTSB activity, which in turn activated NLRP3 inflammasome, and subsequently processed pro-caspase-1 cleavage into caspase-1, resulting in IL-1 β secretion. Genetic inhibition or pharmacological inhibition of CTSB blocked the cleavage of pro-caspase-1 into caspase-1 and subsequent IL-1 β secretion induced by H2O2. Importantly, CTSB activity, IL-1β levels and malondialdehyde (MDA) were remarkably elevated in plasma of AD patients compared to healthy controls, while glutathione was significantly lower than healthy controls. Correlation analyses showed that CTSB activity was positively correlated with IL-1β and MDA levels, but negatively correlated with GSH levels in plasma of AD patients. Taken together, our results indicate that oxidative stress activates NLRP3 through upregulating CTSB activity. Our results identify an important biological function of CTSB in neuroinflammation, suggesting that CTSB is a potential target in AD therapy.  相似文献   

18.
Vertebrates commonly use carotenoid‐based traits as social signals. These can reliably advertise current nutritional status and health because carotenoids must be acquired through the diet and their allocation to ornaments is traded‐off against other self‐maintenance needs. We propose that the coloration more generally reveals an individual’s ability to cope with stressful conditions. We tested this idea by manipulating the nematode parasite infection in free‐living red grouse (Lagopus lagopus scoticus) and examining the effects on body mass, carotenoid‐based coloration of a main social signal and the amount of corticosterone deposited in feathers grown during the experiment. We show that parasites increase stress and reduce carotenoid‐based coloration, and that the impact of parasites on coloration was associated with changes in corticosterone, more than changes in body mass. Carotenoid‐based coloration appears linked to physiological stress and could therefore reveal an individual’s ability to cope with stressors.  相似文献   

19.
The inhibition in the synthesis or bioavailability of nitric oxide (NO) has an important role in progress of hypertension. The blocking of nitric oxide synthase activity may cause vasoconstriction with the formation of reactive oxygen species (ROS). Propolis is a resinous substance collected by honey bees from various plants. Propolis has biological and pharmacological properties. The aim of this study was to examine the effect of propolis on catalase (CAT) activity, malondialdehyde (MDA) and NO levels in the testis tissues of hypertensive rats by Nω‐nitro‐l ‐arginine methyl ester (l ‐NAME). Rats have received nitric oxide synthase inhibitor (l ‐NAME, 40 mg kg?1, intraperitoneally) for 15 days to produce hypertension and propolis (200 mg kg?1, by gavage) during the last 5 days. MDA level in l ‐NAME‐treated group significantly increased compared with control group (P < 0.01). MDA level of l ‐NAME + propolis‐treated rats significantly reduced (P < 0.01) compared with l ‐NAME‐treated group. CAT activity and NO level significantly reduced (P < 0.01) in l ‐NAME group compared with control group. There were no statistically significant increases in the CAT activity and NO level of the l ‐NAME + propolis group compared with the l ‐NAME‐treated group (P > 0.01). These results suggest that propolis changes CAT activity, NO and MDA levels in testis of l ‐NAME‐treated animals, and so it may modulate the antioxidant system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号