首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently, we described the existence of the ubiquitin fold modifier 1 (Ufm1) and its conjugation pathway in Leishmania donovani. We demonstrated the conjugation of Ufm1 to proteins such as mitochondrial trifunctional protein (MTP) that catalyses β‐oxidation of fatty acids in L. donovani. To elucidate the biological roles of the Ufm1‐mediated modifications, we made an L. donovani Ufm1 null mutant (Ufm1?/?). Loss of Ufm1 and consequently absence of Ufm1 conjugation with MTP resulted in diminished acetyl‐CoA, the end‐product of the β‐oxidation in the Ufm1?/? amastigote stage. The Ufm1?/? mutants showed reduced survival in the amastigote stage in vitro and ex vivo in human macrophages. This survival was restored by re‐expression of wild‐type Ufm1 with concomitant induction of acetyl‐CoA but not by re‐expressing the non‐conjugatable Ufm1, indicating the essential nature of Ufm1 conjugation and β‐oxidation. Both cell cycle analysis and ultrastructural studies of Ufm1?/? parasites confirmed the role of Ufm1 in amastigote growth. The defect in vitro growth of amastigotes in human macrophages was further substantiated by reduced survival. Therefore, these studies suggest the importance of Ufm1 in Leishmania pathogenesis with larger impact on other organisms and further provide an opportunity to test Ufm1?/? parasites as drug and vaccine targets.  相似文献   

3.
4.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   

5.
6.
7.
Peroxisomes are thought to have played a key role in the evolution of metabolic networks of photosynthetic organisms by connecting oxidative and biosynthetic routes operating in different compartments. While the various oxidative pathways operating in the peroxisomes of higher plants are fairly well characterized, the reactions present in the primitive peroxisomes (microbodies) of algae are poorly understood. Screening of a Chlamydomonas insertional mutant library identified a strain strongly impaired in oil remobilization and defective in Cre05.g232002 (CrACX2), a gene encoding a member of the acyl‐CoA oxidase/dehydrogenase superfamily. The purified recombinant CrACX2 expressed in Escherichia coli catalyzed the oxidation of fatty acyl‐CoAs into trans‐2‐enoyl‐CoA and produced H2O2. This result demonstrated that CrACX2 is a genuine acyl‐CoA oxidase, which is responsible for the first step of the peroxisomal fatty acid (FA) β‐oxidation spiral. A fluorescent protein‐tagging study pointed to a peroxisomal location of CrACX2. The importance of peroxisomal FA β‐oxidation in algal physiology was shown by the impact of the mutation on FA turnover during day/night cycles. Moreover, under nitrogen depletion the mutant accumulated 20% more oil than the wild type, illustrating the potential of β‐oxidation mutants for algal biotechnology. This study provides experimental evidence that a plant‐type FA β‐oxidation involving H2O2‐producing acyl‐CoA oxidation activity has already evolved in the microbodies of the unicellular green alga Chlamydomonas reinhardtii.  相似文献   

8.
3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one (Z24), a synthetic anti‐angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2‐DE and MALDI‐TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP‐nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid β‐oxidation, and oxidative phosphorylation is a potential mechanism of Z24‐induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis‐mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24‐induced hepatotoxicity.  相似文献   

9.
N‐(3‐Oxododecanoyl)‐l ‐homoserine lactone (C12) is produced by Pseudomonas aeruginosa to function as a quorum‐sensing molecule for bacteria–bacteria communication. C12 is also known to influence many aspects of human host cell physiology, including induction of cell death. However, the signalling pathway(s) leading to C12‐triggered cell death is (are) still not completely known. To clarify cell death signalling induced by C12, we examined mouse embryonic fibroblasts deficient in “initiator” caspases or “effector” caspases. Our data indicate that C12 selectively induces the mitochondria‐dependent intrinsic apoptotic pathway by quickly triggering mitochondrial outer membrane permeabilisation. Importantly, the activities of C12 to permeabilise mitochondria are independent of activation of both “initiator” and “effector” caspases. Furthermore, C12 directly induces mitochondrial outer membrane permeabilisation in vitro. Overall, our study suggests a mitochondrial apoptotic signalling pathway triggered by C12, in which C12 or its metabolite(s) acts on mitochondria to permeabilise mitochondria, leading to activation of apoptosis.  相似文献   

10.
We have previously characterized several fungal‐specific proteins from the human pathogen Candida albicans that either encode subunits of mitochondria Complex I (CI) of the electron transport chain (ETC) or regulate CI activity (Goa1p). Herein, the role of energy production and cell wall gene expression is investigated in the mitochondria mutant goa1Δ. We show that downregulation of cell wall‐encoding genes in the goa1Δ results in sensitivity to cell wall inhibitors such as Congo red and Calcofluor white, reduced phagocytosis by a macrophage cell line, reduced recognition by macrophage receptors, and decreased expression of cytokines such as IL‐6, IL‐10 and IFN‐γ. In spite of the reduced recognition by macrophages, the goa1Δ is still killed to the same extent as control strains. We also demonstrate that expression of the epithelial cell receptors E‐cadherin and EGFR is also reduced in the presence of goa1Δ. Together, our data demonstrate the importance of mitochondria in the expression of cell wall biomolecules and the interaction of C. albicans with innate immune and epithelial cells. Our underlying premise is thatmitochondrial proteins such as Goa1p and other fungal‐specific mitochondrial proteins regulate critical functions in cell growth and in virulence. As such, they remain as valid drug targets for antifungal drug discovery.  相似文献   

11.
Aggregation of α‐synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age‐dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA‐mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ‐1 but not the PD‐associated mutations PINK1 G309D and parkin Δ1–79 or by DJ‐1 C106A.  相似文献   

12.
13.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

14.
The plant mitochondrial DNA‐binding protein ODB1 was identified from a mitochondrial extract after DNA‐affinity purification. ODB1 (organellar DNA‐binding protein 1) co‐purified with WHY2, a mitochondrial member of the WHIRLY family of plant‐specific proteins involved in the repair of organellar DNA. The Arabidopsis thaliana ODB1 gene is identical to RAD52‐1, which encodes a protein functioning in homologous recombination in the nucleus but additionally localizing to mitochondria. We confirmed the mitochondrial localization of ODB1 by in vitro and in vivo import assays, as well as by immunodetection on Arabidopsis subcellular fractions. In mitochondria, WHY2 and ODB1 were found in large nucleo‐protein complexes. Both proteins co‐immunoprecipitated in a DNA‐dependent manner. In vitro assays confirmed DNA binding by ODB1 and showed that the protein has higher affinity for single‐stranded than for double‐stranded DNA. ODB1 showed no sequence specificity in vitro. In vivo, DNA co‐immunoprecipitation indicated that ODB1 binds sequences throughout the mitochondrial genome. ODB1 promoted annealing of complementary DNA sequences, suggesting a RAD52‐like function as a recombination mediator. Arabidopsis odb1 mutants were morphologically indistinguishable from the wild‐type, but following DNA damage by genotoxic stress, they showed reduced mitochondrial homologous recombination activity. Under the same conditions, the odb1 mutants showed an increase in illegitimate repair bypasses generated by microhomology‐mediated recombination. These observations identify ODB1 as a further component of homologous recombination‐dependent DNA repair in plant mitochondria.  相似文献   

15.
Deletion of DNA polymerase eta (Rad30/Polη) in pathogenic yeast Candida albicans is known to reduce filamentation induced by serum, ultraviolet, and cisplatin. Because nonfilamentous C. albicans is widely accepted as avirulent form, here we explored the virulence and pathogenicity of a rad30Δ strain of C. albicans in cell‐based and animal systems. Flow cytometry of cocultured fungal and differentiated macrophage cells revealed that comparatively higher percentage of macrophages was associated with the wild‐type than rad30Δ cells. In contrast, higher number of Polη‐deficient C. albicans adhered per macrophage membrane. Imaging flow cytometry showed that the wild‐type C. albicans developed hyphae after phagocytosis that caused necrotic death of macrophages to evade their clearance. Conversely, phagosomes kill the fungal cells as estimated by increased metacaspase activity in wild‐type C. albicans. Despite the morphological differences, both wild‐type and rad30? C. albicans were virulent with a varying degree of pathogenicity in mice models. Notably, mice with Th1 immunity were comparatively less susceptible to systemic fungal infection than Th2 type. Thus, our study clearly suggests that the modes of interaction of morphologically different C. albicans strains with the host immune cells are diverged, and host genetic background and several other attributing factors of the fungus could additionally determine their virulence.  相似文献   

16.
Ketone bodies (KBs) were known to suppress seizure. Untraditionally, neurons were recently reported to utilize fatty acids and produce KBs, but the effect of seizure on neuronal ketogenesis has not been researched. Zinc‐α2‐glycoprotein (ZAG) was reported to suppress seizure via unclear mechanism. Interestingly, ZAG was involved in fatty acid β‐oxidation and thus may exert anti‐epileptic effect by promoting ketogenesis. However, this promotive effect of ZAG on neuronal ketogenesis has not been clarified. In this study, we performed immunoprecipitation and mass spectrometry to identify potential interaction partners with ZAG. The mechanisms of how ZAG translocated into mitochondria were determined by quantitative coimmunoprecipitation after treatment with apoptozole, a heat shock cognate protein 70 (HSC70) inhibitor. ZAG level was modulated by lentivirus in neurons or adeno‐associated virus in rat brains. Seizure models were induced by magnesium (Mg2+)‐free artificial cerebrospinal fluid in neurons or intraperitoneal injection of pentylenetetrazole kindling in rats. Ketogenesis was determined by cyclic thio‐NADH method in supernatant of neurons or brain homogenate. The effect of peroxisome proliferator–activated receptor γ (PPARγ) on ZAG expression was examined by Western blot, quantitative real‐time polymerase chain reaction (qRT‐PCR) and chromatin immunoprecipitation qRT‐PCR. We found that seizure induced ketogenesis deficiency via a ZAG‐dependent mechanism. ZAG entered mitochondria through a HSC70‐dependent mechanism, promoted ketogenesis by binding to four β‐subunits of long‐chain L‐3‐hydroxyacyl‐CoA dehydrogenase (HADHB) and alleviated ketogenesis impairment in a neuronal seizure model and pentylenetetrazole‐kindled epileptic rats. Additionally, PPARγ activation up‐regulated ZAG expression by binding to promoter region of AZGP1 gene and promoted ketogenesis through a ZAG‐dependent mechanism.  相似文献   

17.
During disseminated infection by the opportunistic pathogen Candida glabrata, uptake of sterols such as serum cholesterol may play a significant role during pathogenesis. The ATP‐binding cassette transporter Aus1p is thought to function as a sterol importer and in this study, we show that uptake of exogenous sterols occurred under anaerobic conditions in wild‐type cells of C. glabrata but not in AUS1‐deleted mutant (aus1Δ) cells. In aerobic cultures, growth inhibition by fluconazole was prevented in the presence of serum, and AUS1 expression was upregulated. Uptake of sterol by azole treated cells required the presence of serum, and sterol alone did not reverse FLC inhibition of growth. However, if iron availability in the growth medium was limited by addition of the iron chelators ferrozine or apo‐transferrin, growth of wild‐type cells, but not aus1Δ cells, was rescued. In a mouse model of disseminated infection, the C. glabrata aus1Δ strain caused a significantly decreased kidney fungal burden than the wild‐type strain or a strain in which AUS1 was restored. We conclude that sterol uptake in C. glabrata can occur in iron poor environment of host tissues and thus may contribute to C. glabrata pathogenesis.  相似文献   

18.
BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram‐negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of β‐barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded β‐barrel precursors via the five polypeptide transport‐associated (POTRA) domains at its N‐terminus. The C‐terminus of BamA folds into a β‐barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram‐negative bacteria and appear to function in a species‐specific manner. Here we investigate the nature of this species‐specificity by examining whether chimeric Escherichia coli BamA fusion proteins, carrying either the β‐barrel or POTRA domains from various BamA orthologues, can functionally replace E. coli BamA. We demonstrate that the β‐barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the β‐barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion.  相似文献   

19.
The cyanobacterium Synechocystis sp. PCC 6803 is a model species commonly employed for biotechnological applications. It is naturally able to accumulate zeaxanthin (Zea) and echinenone (Ech), but not astaxanthin (Asx), which is the highest value carotenoid produced by microalgae, with a wide range of applications in pharmaceutical, cosmetics, food and feed industries. With the aim of finding an alternative and sustainable biological source for the production of Asx and other valuable hydroxylated and ketolated intermediates, the carotenoid biosynthetic pathway of Synechocystis sp. PCC 6803 has been engineered by introducing the 4,4′ β‐carotene oxygenase (CrtW) and 3,3′ β‐carotene hydroxylase (CrtZ) genes from Brevundimonas sp. SD‐212 under the control of a temperature‐inducible promoter. The expression of exogenous CrtZ led to an increased accumulation of Zea at the expense of Ech, while the expression of exogenous CrtW promoted the production of non‐endogenous canthaxanthin and an increase in the Ech content with a concomitant strong reduction of β‐carotene (β‐car). When both Brevundimonas sp. SD‐212 genes were coexpressed, significant amounts of non‐endogenous Asx were obtained accompanied by a strong decrease in β‐car content. Asx accumulation was higher (approximately 50% of total carotenoids) when CrtZ was cloned upstream of CrtW, but still significant (approximately 30%) when the position of genes was inverted. Therefore, the engineered strains constitute a useful tool for investigating the ketocarotenoid biosynthetic pathway in cyanobacteria and an excellent starting point for further optimisation and industrial exploitation of these organisms for the production of added‐value compounds.  相似文献   

20.
Chronic elevation of NEFAs (non‐esterified fatty acids) due to insulin resistance and obesity has been shown to be associated with increased β‐cell apoptosis and with the aetiology of the reduced β‐cell mass of Type 2 diabetes. SAPK (stress‐activated protein kinase)/JNK (c‐Jun N‐terminal kinase) have been implicated in the control of apoptosis. C‐K [compound K; 20‐O‐β‐d ‐glucopyranosyl‐20(S)‐protopanaxadiol] is the main intestinal bacterial metabolite of protopanaxadiol ginsenosides. Currently, little is known about the effects of C‐K on β‐cells with the presence of NEFAs. The aim of the present study was to investigate the in vitro protective effect of C‐K on MIN6N8 mouse insulinoma β‐cells against NEFA‐induced apoptosis, as well as the modulating effect on SAPK/JNK activation. Our results have shown that C‐K inhibited the palmitate‐induced apoptosis through modulating SAPK/JNK activation. We conclude that C‐K protects against β‐cell death and that, by anti‐apoptotic activity, C‐K may contribute to the previously reported anti‐diabetic actions of ginseng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号