首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the present study, we analyzed the coexistence pattern of the Lusitanian pine vole (Microtus lusitanicus) and the Mediterranean pine vole (Microtus duodecimcostatus) in a potential area of sympatry in a Mediterranean landscape (Portugal). We also determined the relative contribution of local, landscape, and spatial factors explaining the differences in the distribution patterns of the two species in the region. Using a kriging interpolation method, we obtained a map of sympatric and allopatric areas of species occurrence. The estimated sympatry area corresponded to a northwest–southeast belt representing 11.3% of the study area. Habitat niche differences were assessed with binomial GLMs followed by a variance partitioning. At a local scale, higher altitude, higher cover of shrubs, lower clay content in the soil, and lower cover of tree canopy were the most important factors distinguishing M. lusitanicus presence sites from those with M. duodecimcostatus. At a larger scale, the presence of forest landscape units and the low abundance of “montado” units were the most influencing landscape factors in the identification of M. lusitanicus occurrence sites when compared to M. duodecimcostatus. Our results suggested that local coexistence of M. lusitanicus and M. duodecimcostatus in the field is a rare event. The differences in distribution patterns of the two pine vole species were mostly explained by fine-scale environmental factors and by shared spatial effects.  相似文献   

3.
Among the most debated subjects in speciation is the question of its mode. Although allopatric (geographical) speciation is assumed the null model, the importance of parapatric and sympatric speciation is extremely difficult to assess and remains controversial. Here I develop a novel approach to distinguish these modes of speciation by studying the evolution of reproductive isolation (RI) among taxa. I focus on the Drosophila genus, for which measures of RI are known. First, I incorporate RI into age‐range correlations. Plots show that almost all cases of weak RI are between allopatric taxa whereas sympatric taxa have strong RI. This either implies that most reproductive isolation (RI) was initiated in allopatry or that RI evolves too rapidly in sympatry to be captured at incipient stages. To distinguish between these explanations, I develop a new “rate test of speciation” that estimates the likelihood of non‐allopatric speciation given the distribution of RI rates in allopatry versus sympatry. Most sympatric taxa were found to have likely initiated RI in allopatry. However, two putative candidate species pairs for non‐allopatric speciation were identified (5% of known Drosophila). In total, this study shows how using RI measures can greatly inform us about the geographical mode of speciation in nature.  相似文献   

4.
Understanding the processes of speciation is an important challenge in improving knowledge of the origin of biodiversity. One crucial point is to assess the causes of reproductive isolation, especially in the case of co‐occurring species. Differences in microscale spatial distribution in small organisms may blur the issue. We explored biological processes underlying speciation within dung beetles belonging to the vacca species complex (Scarabaeidae: Onthophagus). The two taxa of this complex, O. vacca and O. medius, not only are known to have a large overlapping Palearctic distribution range but also share the same cowpat with no physical barriers and no observed specific aggregated patterns in the local distribution. The present study aimed at determining the level of isolation between the two taxa and discusses the most likely scenario of the speciation (sympatry vs. allopatry) based on the Coyne & Orr's (2004) four criteria. We conducted a full study on populations sampled within the Mediterranean region integrating morphological analysis (digital image analysis of the elytral melanism pattern), two‐gene phylogenies, population genetic analyses on populations sampled from an area where both species occur and another one with O. vacca only, as well as intra‐ and interspecific mating and crossing bioassays. The variation in the elytral melanism pattern clearly followed a bimodal distribution, with O. medius being more melanic than O. vacca, with a very limited overlapping area. The two taxa are reproductively isolated, with a strong postzygotic incompatibility despite the absence of sexual isolation. Sequence analysis of both nuclear and mitochondrial markers revealed a deep divergence between the two taxa dating back to 8.7 Mya. All findings concurred with some phenological observations and the conclusion that the most likely scenario for speciation in the vacca complex was an allopatric speciation followed by secondary contact.  相似文献   

5.
The genetic structure and dynamics of hybrid zones provide crucial information for understanding the processes and mechanisms of evolutionary divergence and speciation. In general, higher levels of evolutionary divergence between taxa are more likely to be associated with reproductive isolation and may result in suppressed or strongly restricted hybridization. In this study, we examined two secondary contact zones between three deep evolutionary lineages in the common vole (Microtus arvalis). Differences in divergence times between the lineages can shed light on different stages of reproductive isolation and thus provide information on the ongoing speciation process in M. arvalis. We examined more than 800 individuals for mitochondrial (mtDNA), Y‐chromosome and autosomal markers and used assignment and cline analysis methods to characterize the extent and direction of gene flow in the contact zones. Introgression of both autosomal and mtDNA markers in a relatively broad area of admixture indicates selectively neutral hybridization between the least‐divergent lineages (Central and Eastern) without evidence for partial reproductive isolation. In contrast, a very narrow area of hybridization, shifts in marker clines and the quasi‐absence of Y‐chromosome introgression support a moving hybrid zone and unidirectional selection against male hybrids between the lineages with older divergence (Central and Western). Data from a replicate transect further support non‐neutral processes in this hybrid zone and also suggest a role for landscape history in the movement and shaping of geneflow profiles.  相似文献   

6.
Reproductive isolation is central to the speciation process, and cases where the strength of reproductive isolation varies geographically can inform our understanding of speciation mechanisms. Although generally treated as separate species, Black‐capped chickadees (Poecile atricapillus) and Carolina chickadees (P. carolinensis) hybridize and undergo genetic introgression in many areas where they come into contact across the eastern United States and in the northern Appalachian Mountains. The Great Smoky Mountains harbor the last large breeding population of atricapillus in the southern Appalachians, isolated from the species’ main range by nearly 200 km. This population is believed to be reproductively isolated from local carolinensis due to an unusual, behaviorally mediated elevational range gap, which forms during the breeding season and may function as an incipient reproductive isolating mechanism. We examined the effectiveness of this putative isolating mechanism by looking for genetic introgression from carolinensis in Great Smoky Mountain atricapillus. We characterized this population and parental controls genetically using hundreds of amplified fragment length polymorphism (AFLP) loci as well as mitochondrial DNA (mtDNA) sequence data from cytochrome‐b. Great Smoky Mountain atricapillus have experienced nuclear genetic introgression from carolinensis, but at much lower levels than other populations near the hybrid zone to the north. No mitochondrial introgression was detected, in contrast to northern contact areas. Thus, the seasonal elevational range gap appears to have been effective in reducing gene flow between these closely related taxa.  相似文献   

7.
New agricultural pest species attacking introduced crops may evolve from pre‐existing local herbivores by ecological speciation, thereby becoming a species by becoming a pest. We compare the evolutionary pathways by which two maize pests (the Asian and the European corn borers, ACB and ECB) in the genus Ostrinia (Lepidoptera, Crambidae) probably diverged from an ancestral species close to the current Adzuki bean borer (ABB). We typed larval Ostrinia populations collected on maize and dicotyledons across China and eastern Siberia, at microsatellite and mitochondrial loci. We found only two clusters: one on maize (as expected) and a single one on dicotyledons despite differences in male mid‐tibia morphology, suggesting that all individuals from dicotyledons belonged to the ABB. We found evidence for migrants and hybrids on both host plant types. Hybrids suggest that field reproductive isolation is incomplete between ACB and ABB. Interestingly, a few individuals with an ‘ABB‐like’ microsatellite profile collected on dicotyledons had ‘ACB’ mtDNA rather than ‘ABB‐like’ mtDNA, whereas the reverse was never found on maize. This suggests asymmetrical gene flow directed from the ACB towards the ABB. Hybrids and backcrosses in all directions were obtained in no‐choice tests. In laboratory conditions, they survived as well as parental strain individuals. In Xinjiang, we found ACB and ECB in sympatry, but no hybrids. Altogether, our results suggest that reproductive isolation between ACB and ABB is incomplete and mostly prezygotic. This points to ecological speciation as a possible evolutionary scenario, as previously found for ECB and ABB in Europe.  相似文献   

8.
The rapid evolution of sexual isolation in sympatry has long been associated with reinforcement (i.e., selection to avoid maladaptive hybridization). However, there are many species pairs in sympatry that have evolved rapid sexual isolation without known costs to hybridization. A major unresolved question is what evolutionary processes are involved in driving rapid speciation in such cases. Here, we focus on one such system; the Drosophila athabasca species complex, which is composed of three partially sympatric and interfertile semispecies: WN, EA, and EB. To study speciation in this species complex, we assayed sexual and genomic isolation within and between these semispecies in both sympatric and allopatric populations. First, we found no evidence of reproductive character displacement (RCD) in sympatric zones compared to distant allopatry. Instead, semispecies were virtually completely sexually isolated from each other across their entire ranges. Moreover, using spatial approaches and coalescent demographic simulations, we detected either zero or only weak heterospecific gene flow in sympatry. In contrast, within each semispecies we found only random mating and little population genetic structure, except between highly geographically distant populations. Finally, we determined that speciation in this system is at least an order of magnitude older than previously assumed, with WN diverging first, around 200K years ago, and EA and EB diverging 100K years ago. In total, these results suggest that these semispecies should be given full species status and we adopt new nomenclature: WN—D. athabasca, EA—D. mahican, and EB—D. lenape. While the lack of RCD in sympatry and interfertility do not support reinforcement, we discuss what additional evidence is needed to further decipher the mechanisms that caused rapid speciation in this species complex.  相似文献   

9.
Contact zones between species provide a unique opportunity to test whether taxa can hybridize or not. Cross‐breeding or hybridization between closely related taxa can promote gene flow (introgression) between species, adaptation, or even speciation. Though hybridization events may be short‐lived and difficult to detect in the field, genetic data can provide information about the level of introgression between closely related taxa. Hybridization can promote introgression between species, which may be an important evolutionary mechanism for either homogenization (reversing initial divergence between species) or reproductive isolation (potentially leading to speciation). Here, we used thousands of genetic markers from nuclear DNA to detect hybridization between two parapatric frog species (Rana boylii and Rana sierrae) in the Sierra Nevada of California. Based on principal components analysis, admixture, and analysis of heterozygosity at species diagnostic SNPs, we detected two F1 hybrid individuals in the Feather River basin, as well as a weak signal of introgression and gene flow between the frog species compared with frog populations from two other adjacent watersheds. This study provides the first documentation of hybridization and introgression between these two species, which are of conservation concern.  相似文献   

10.
Despite substantial interest in coevolution's role in diversification, examples of coevolution contributing to speciation have been elusive. Here, we build upon past studies that have shown both coevolution between South Hills crossbills and lodgepole pine (Pinus contorta), and high levels of reproductive isolation between South Hills crossbills and other ecotypes in the North American red crossbill (Loxia curvirostra) complex. We used genotyping by sequencing to generate population genomic data and applied phylogenetic and population genetic analyses to characterize the genetic structure within and among nine of the ecotypes. Although genome‐wide divergence was slight between ecotypes (FST = 0.011–0.035), we found evidence of relative genetic differentiation (as measured by FST) between and genetic cohesiveness within many of them. As expected for nomadic and opportunistic breeders, we detected no evidence of isolation by distance. The one sedentary ecotype, the South Hills crossbill, was genetically most distinct because of elevated divergence at a small number of loci rather than pronounced overall genome‐wide divergence. These findings suggest that mechanisms related to recent local coevolution between South Hills crossbills and lodgepole pine (e.g. strong resource‐based density dependence limiting gene flow) have been associated with genome divergence in the face of gene flow. Our results further characterize a striking example of coevolution driving speciation within perhaps as little as 6000 years.  相似文献   

11.
The study of natural hybrid zones can illuminate aspects of lineage divergence and speciation in morphologically cryptic taxa. We studied a hybrid zone between two highly divergent but morphologically similar lineages (south‐western and south‐eastern) of the Iberian endemic Bosca's newt (Lissotriton boscai) in SW Iberia with a multilocus dataset (microsatellites, nuclear and mitochondrial genes). STRUCTURE and NEWHYBRIDS analyses retrieved few admixed individuals, which classified as backcrosses involving parental individuals of the south‐western lineage. Our results show asymmetric introgression of mtDNA beyond the contact from this lineage into the south‐eastern lineage. Analysis of nongeographic introgression patterns revealed asymmetries in the direction of introgression, but except for mtDNA, we did not find evidence for nonconcordant introgression patterns across nuclear loci. Analysis of a 150‐km transect across the hybrid zone showed broadly coincident cline widths (ca. 3.2–27.9 km), and concordant cline centres across all markers, except for mtDNA that is displaced ca. 60 km northward. Results from ecological niche modelling show that the hybrid zone is in a climatically homogenous area with suitable habitat for the species, suggesting that contact between the two lineages is unlikely to occur further south as their distributions are currently separated by an extensive area of unfavourable habitat. Taken together, our findings suggest the genetic structure of this hybrid zone results from the interplay of historical (biogeographic) and population‐level processes. The narrowness and coincidence of genetic clines can be explained by weak selection against hybrids and reflect a degree of reproductive isolation that is consistent with cryptic speciation.  相似文献   

12.
Gene flow is thought to impede genetic divergence and speciation by homogenizing genomes. Recent theory and research suggest that sufficiently strong divergent selection can overpower gene flow, leading to loci that are highly differentiated compared to others. However, there are also alternative explanations for this pattern. Independent evidence that loci in highly differentiated regions are under divergent selection would allow these explanations to be distinguished, but such evidence is scarce. Here, we present multiple lines of evidence that many of the highly divergent SNPs in a pair of sister morning glory species, Ipomoea cordatotriloba and I. lacunosa, are the result of divergent selection in the face of gene flow. We analysed a SNP data set across the genome to assess the amount of gene flow, resistance to introgression and patterns of selection on loci resistant to introgression. We show that differentiation between the two species is much lower in sympatry than in allopatry, consistent with interspecific gene flow in sympatry. Gene flow appears to be substantially greater from I. lacunosa to I. cordatotriloba than in the reverse direction, resulting in sympatric and allopatric I. cordatotriloba being substantially more different than sympatric and allopatric I. lacunosa. Many SNPs highly differentiated in allopatry have experienced divergent selection, and, despite gene flow in sympatry, resist homogenization in sympatry. Finally, five out of eight floral and inflorescence characteristics measured exhibit asymmetric convergence in sympatry. Consistent with the pattern of gene flow, I. cordatotriloba traits become much more like those of I. lacunosa than the reverse. Our investigation reveals the complex interplay between selection and gene flow that can occur during the early stages of speciation.  相似文献   

13.
Knowledge on interspecific pre‐ and post‐zygotic isolation mechanisms provides insights into speciation patterns. Using crosses (F1 and backcrosses) of two closely related flea beetles species, Altica fragariae and A. viridicyanea, specialized on different hosts in sympatry, we measured: (a) the type of reproductive isolation and (b) the inheritance mode of preference and host‐specific performance, using a joint‐scaling test. Each species preferred almost exclusively its host plant, creating strong prezygotic isolation between them, and suggesting that speciation may occur at least partly in sympatry. Reproductive isolation was intrinsic between females of A. fragariae and either A. viridicyanea or F1 males, whereas the other crosses showed ecologically dependent reproductive isolation, suggesting ecological speciation. The genetic basis of preference and performance was at least partially independent, and several loci coded for preference, which limits the possibility of sympatric speciation. Hence, both ecological and intrinsic factors may contribute to speciation between these species.  相似文献   

14.
The spatial subdivision of species often plays a pivotal role in speciation. Across their entire range, species are rarely panmictic and crucial consequences of spatial subdivision are (1) random genetic drift including historical factors, (2) uniform selection, and (3) divergent selection. Each of these consequences may result in geographic variation and eventually reproductive isolation, but their relative importance in speciation is still unclear. In this study, we used a combination of genetic, morphological, and climatic data to obtain a comprehensive picture of differentiation among three closely related, parapatrically distributed taxa of the land snail genus Theba occurring along the Atlantic coasts of South Morocco and Western Sahara. We conducted Mantel and partial Mantel tests to relate phenotypic and genotypic variation of these species to geography and/or climate. As null hypothesis for an evolutionary scenario, we assumed nonadaptive speciation and expected a pattern of isolation by distance among taxa. Rejection of the null hypothesis would indicate isolation by environment due to adaptation. Generally, genetic drift plays an important role but is rarely considered as sole driver of speciation. It is the combination of drift and selection that predominantly drives speciation. This study, however, provides a potential example, in which nonadaptive speciation, that is, genetic drift, is apparently the main driver of shaping the diversity of Theba in NW Africa. Restriction of gene flow between populations caused by geographic isolation probably has played an important role. Climate oscillations during the Plio‐ and Pleistocene may have led to repeated ecological changes in NW Africa and disruptions of habitats promoting differentiation by geographic isolation. The inferred evolutionary scenario, however, did not fully explain the incongruence between the AFLP‐ and mtDNA‐tree topologies. This incongruence might indicate past hybridization among the studied Theba forms.  相似文献   

15.
The phylogeny of the genus Picea was investigated by sequencing three loci from the paternally inherited chloroplast genome (trnK, rbcL and trnTLF) and the intron 2 of the maternally transmitted mitochondrial gene nad1 for 35 species. Significant topological differences were found between the trnK tree and the rbcL and trnTLF phylogenetic trees, and between cpDNA and mtDNA phylogenies. None of the phylogenies matched morphological classifications. The mtDNA phylogeny was geographically more structured than cpDNA phylogenies, reflecting the different inheritance of the two cytoplasmic genomes in the Pinaceae and their differential dispersion by seed only and seed and pollen, respectively. Most North American taxa formed a monophyletic group on the mtDNA tree, with topological patterns suggesting geographic speciation by range fragmentation or by dispersal and isolation. Similar patterns were also found among Asian taxa. Such a trend towards geographic speciation is anticipated in other Pinaceae genera with similar life history, autecology and reproductive system. Incongruences between organelle phylogenies suggested the occurrence of mtDNA capture by invading cpDNA. Incongruences between cpDNA partitions further suggested heterologous recombination presumably also linked to ancient reticulate evolution. Whilst cpDNA appears potentially valuable for molecular taxonomy and systematics purposes, these results emphasize the reduced value of cpDNA to infer vertical descent and the speciation history for plants with paternal transmission and high dispersal of their chloroplast genome.  相似文献   

16.
Secondary contact in close relatives can result in hybridization and the admixture of previously isolated gene pools. However, after an initial period of hybridization, reproductive isolation can evolve through different processes and lead to the interruption of gene flow and the completion of the speciation process. Omocestus minutissimus and Ouhagonii are two closely related grasshoppers with partially overlapping distributions in the Central System mountains of the Iberian Peninsula. To analyse spatial patterns of historical and/or contemporary hybridization between these two taxa and understand how species boundaries are maintained in the region of secondary contact, we sampled sympatric and allopatric populations of the two species and obtained genome‐wide single nucleotide polymorphism data using a restriction site‐associated DNA sequencing approach. We used Bayesian clustering analyses to test the hypothesis of contemporary hybridization in sympatric populations and employed a suite of phylogenomic approaches and a coalescent‐based simulation framework to evaluate alternative hypothetical scenarios of interspecific gene flow. Our analyses rejected the hypothesis of contemporary hybridization but revealed past introgression in the area where the distributions of the two species overlap. Overall, these results point to a scenario of historical gene flow after secondary contact followed by the evolution of reproductive isolation that currently prevents hybridization among sympatric populations.  相似文献   

17.
Until complete reproductive isolation is achieved, the extent of differentiation between two diverging lineages is the result of a dynamic equilibrium between genetic isolation and mixing. This is especially true for hybrid taxa, for which the degree of isolation in regard to their parental species is decisive in their capacity to rise as a new and stable entity. In this work, we explored the past and current patterns of hybridization and divergence within a complex of closely related butterflies in the genus Coenonympha in which two alpine species, C. darwiniana and C. macromma, have been shown to result from hybridization between the also alpine C. gardetta and the lowland C. arcania. By testing alternative scenarios of divergence among species, we show that gene flow has been uninterrupted throughout the speciation process, although leading to different degrees of current genetic isolation between species in contact zones depending on the pair considered. Nonetheless, at broader geographic scale, analyses reveal a clear genetic differentiation between hybrid lineages and their parental species, pointing out to an advanced stage of the hybrid speciation process. Finally, the positive correlation observed between ecological divergence and genetic isolation among these butterflies suggests a potential role for ecological drivers during their speciation processes.  相似文献   

18.
The viviparous sea snakes (Hydrophiinae) are a young radiation of at least 62 species that display spectacular morphological diversity and high levels of local sympatry. To shed light on the mechanisms underlying sea snake diversification, we investigated recent speciation and eco‐morphological differentiation in a clade of four nominal species with overlapping ranges in Southeast Asia and Australia. Analyses of morphology and stomach contents identified the presence of two distinct ecomorphs: a ‘macrocephalic’ ecomorph that reaches >2 m in length, has a large head and feeds on crevice‐dwelling eels and gobies; and a ‘microcephalic’ ecomorph that rarely exceeds 1 m in length, has a small head and narrow fore‐body and hunts snake eels in burrows. Mitochondrial sequences show a lack of reciprocal monophyly between ecomorphs and among putative species. However, individual assignment based on newly developed microsatellites separated co‐distributed specimens into four significantly differentiated clusters corresponding to morphological species designations, indicating limited recent gene flow and progress towards speciation. A coalescent species tree (based on mitochondrial and nuclear sequences) and isolation‐migration model (mitochondrial and microsatellite markers) suggest between one and three transitions between ecomorphs within the last approximately 1.2 million to approximately 840 000 years. In particular, the macrocephalic ‘eastern’ population of Hydrophis cyanocinctus and microcephalic H. melanocephalus appear to have diverged very recently and rapidly, resulting in major phenotypic differences and restriction of gene flow in sympatry. These results highlight the viviparous sea snakes as a promising system for speciation studies in the marine environment.  相似文献   

19.
The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor–derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.  相似文献   

20.
Cases of geographically restricted co‐occurring sister taxa are rare and may point to potential divergence with gene flow. The two bat species Murina gracilis and Murina recondita are both endemic to Taiwan and are putative sister species. To test for nonallopatric divergence and gene flow in these taxa, we generated sequences using Sanger and next‐generation sequencing, and combined these with microsatellite data for coalescent‐based analyses. MtDNA phylogenies supported the reciprocally monophyletic sister relationship between M. gracilis and M. recondita; however, clustering of microsatellite genotypes revealed several cases of species admixture suggesting possible introgression. Sequencing of microsatellite flanking regions revealed that admixture signatures stemmed from microsatellite allele homoplasy rather than recent introgressive hybridization, and also uncovered an unexpected sister relationship between M. recondita and the continental species Murina eleryi, to the exclusion of M. gracilis. To dissect the basis of these conflicts between ncDNA and mtDNA, we analysed sequences from 10 anonymous ncDNA loci with *beast and isolation‐with‐migration and found two distinct clades of M. eleryi, one of which was sister to M. recondita. We conclude that Taiwan was colonized by the ancestor of M. gracilis first, followed by the ancestor of M. recondita after a period of allopatric divergence. After colonization, the mitochondrial genome of M. recondita was replaced by that of the resident M. gracilis. This study illustrates how apparent signatures of sympatric divergence can arise from complex histories of allopatric divergence, colonization and hybridization, thus highlighting the need for rigorous analyses to distinguish between such scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号