首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previous long-term studies have shown that in the pineal gland of rats melatonin synthesis is subject to infradian rhythms with periods between 4 and 7 days. Since in these studies melatonin-related parameters were measured at one timepoint of a 24-hr cycle only, the aim of the present investigation was to extend these experiments by more frequent sampling, to characterize the infradian rhythmicity in more detail. Male Sprague-Dawley rats kept under a light schedule of LD 12:12 (lights on at 0700) were killed at 6-hr intervals on 8 consecutive days. After decapitation the pineal gland was rapidly dissected out, followed by measurements of one of the melatonin-forming enzymes, serotonin N-acetyltransferase (NAT) activity. It was found that pineal NAT activity exhibited the well known day/night rhythm, i.e. low activity during daytime and strikingly enhanced activity at night, during the first 4 days of the experiment. On the fifth night (from Saturday to Sunday) an unusually high NAT peak occurred at 2400 hr, followed by two atypical 24-hr cycles. In the first cycle the midnight and 0600 hr values were equal and in the second cycle the 0600 hr value was significantly higher than the midnight value. To investigate whether the unusually high NAT peak was a single event or not, four additional short-term experiments were carried out at 2400 hr on 4 consecutive weekends, from Friday to Monday. In each of the four 4-day experiments a distinctly higher peak of NAT activity was found on Saturday, but with time the peaks became less prominent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
5.
Summary 1. Innervation of the mammalian pineal gland is mainly sympathetic. Pineal synthesis of melatonin and its levels in the circulation are thought to be under strict adrenergic control of serotoninN-acetyltransferase (NAT). In addition, several putative pineal neurotransmitters modulate melatonin synthesis and secretion.2. In this review, we summarize what is currently known on the pineal cholinergic system. Cholinergic signaling in the rat pineal gland is suggested based on the localization of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), as well as muscarinic and nicotinic ACh binding sites in the gland.3. A functional role of ACh may be regulation of pineal synaptic ribbon numbers and modulation of melatonin secretion, events possibly mediated by phosphoinositide (PI) hydrolysis and activation of protein kinase C via muscarinic ACh receptors (mAChRs).4. We also present previously unpublished data obtained using primary cultures of rat pinealocytes in an attempt to get more direct information on the effects of cholinergic stimulus on pinealocyte melatonin secretion. These studies revealed that the cholinergic effects on melatonin release are restricted mainly to intact pineal glands since they were not readily detected in primary pinealocyte cultures.  相似文献   

6.
Summary The pineal gland of the rat receives a rich nervous supply originating from the superior cervical ganglia. These fibers contain serotonin in addition to their neurotransmitter, noradrenaline. Cytochemical studies at the ultrastructural level have shown that both amines are present in the cores of the granular vesicles that are characteristic of these nerves. It is presently shown that the bilateral electrical stimulation of the preganglionic fibers innervating the ganglia markedly reduces the number of small sites reacting cytochemically for both noradrenaline and serotonin, these sites corresponding to the cores of small granular vesicles, while the larger reactive sites (cores of large vesicles) remain unaltered. The vesicles are retained in nerve terminals after stimulation, as observed in conventionally processed tissues, although with altered sizes and shapes. Apart from these cytochemical and structural changes, nerve stimulation also reduces the endogenous noradrenaline content of the pineal gland. Thus, both noradrenaline and serotonin are released from their storage sites in pineal sympathetic nerves after electrical stimulation in vivo. This suggests the possibility that several substances with presumed transmitter or modulatory functions might be simultaneously released by nerve impulses from a given nerve terminal.  相似文献   

7.
In intact Wistar pubertal male rats held on LD 8:16 (winter) and 16:8 (summer) pineal melatonin (M) production and other pineal indoles content serotonin (S), 5-methoxytriptamine (5-MT), N-acetylserotonin (N-aS), 5-hydroxyindoleacetic acid (5-HIAA) and 5-methoxyindoleacetic acid (5-MIAA) were investigated in basic conditions and after 10-days T4 administration. The results suggest, that intact control in winter comparing with summer demonstrates high M, N-aS, 5-HIAA and 5-MIAA level, but low 5-MT concentrations, S level was not changed. T4 administration in winter produced a pronounced augmentation of all parameters (excluding serotonin), in summer M production not only increased, but appears to be dependent on the active metabolism of his precursors (S, 5-MT, N-aS). The experimental data favour more profound comprehension to the mechanisms of pineal activity regulation.  相似文献   

8.
9.
Conclusion The circadian rhythm of melatonin synthesis in the pineal glands of various species has been summarized. The night-time elevation of melatonin content is in most if not all cases regulated by the change of N-acetyltransferase activity. In mammals, the N-acetyltransferase rhythm is controlled by the central nervous system, presumably by suprachiasmatic nuclei in hypothalamus through the superior cervical ganglion. In birds, the circadian oscillator that regulates the N-acetyltransferase rhythm is located in the pineal glands. The avian pineal gland may play a biological clock function to control the circadian rhythms in physiological, endocrinological and biochemical processes via pineal hormone melatonin.  相似文献   

10.
Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.  相似文献   

11.
12.
13.
Adult male albino rats were acclimated to constant light (light:dark-LD-24:0) or to darkness interrupted with brief periods of light at 6 h intervals (LD 1/4:5 3/4 X 4) concurrently with rats maintained in a LD 14:10 photoperiodic cycle. The activity and rhythmicity of pineal serotonin N-acetyltransferase (NAT) was examined at regular intervals for 24 hours in rats maintained in the experimental photoperiods and compared to pineal NAT activity and rhythmicity in rats maintained in the LD 14:10 photoperiod. The results indicate that constant light is capable of depressing nocturnal levels of rat pineal NAT and obliterating the pineal NAT rhythm. Likewise, rats subjected to darkness interrupted with brief periods of light at 6 h intervals experienced a similar response in pineal NAT activity to animals subjected to constant light, i.e., pineal NAT activity was persistently low and the rhythmicity was obliterated. The results are discussed relative to the hypothesis that the pineal NAT activity responds to an endogenous rhythm in photoperiodic time measurement. The evidence herein suggests that the time of occurrence of environmental light in the photoperiod is more important in determining pineal NAT activity and/or rhythmicity than is the total amount of darkness or the dark to light ratio to which animals may be subjected.  相似文献   

14.
The concentration of serotonin within the pineal gland of the monkey exhibits a 24-hour rhythm, being higher during the hours of light and falling during the hours of darkness. Chiasmotomies were performed upon male cynomolgus monkeys (Macaca irus) to ascertain whether the intrapineal concentration of serotonin is dependent upon information passing from the eyes by means of nerve fibers that cross in the optic chiasma. After two weeks, the operated animals, whether killed in the light or the dark, showed a significant reduction in intrapineal serotonin compared with controls; however, the concentration of serotonin in operated animals killed during hours of light was comparable with that of control animals killed during the corresponding hours of darkness. The results indicate that the intrapineal concentration of serotonin is dependent upon information transmitted from the eyes by means of nerve fibers which cross in the optic chiasma; it is possible that these fibers are also components of the accessory optic tracts. It also is suggested that during hours of light, uncrossed fibers of retinal origin may participate in the regulation of the intrapineal serotonin concentration of this monkey.  相似文献   

15.
Summary In the present study an attempt was made to demonstrate melatonin in the rat pineal gland by means of immunohistochemistry. The anti-body used was raised against 5-methoxy-N-acetyltryptophan which is chemically similar to melatonin. Specific fluorescence was demonstrable only in pineals from rats killed during the night, when melatonin formation is high. It was restricted to parenchymal cells lying in a marginal zone of the organ. These results are discussed in relation to a subdivision of the pineal parenchyma into cortical and medullary areas.Supported by a grant of the Deutsche Forschungsgemeinschaft (VO 135/4) within the Schwerpunktprogramm Neuroendokrinologie  相似文献   

16.
Levels of norepinephrine and dopamine in the rat pineal gland were determined by a radioenzymatic assay with modifications to separate the reaction products. Catecholamines were converted to 3-O-methylated derivatives in the presence of catechol-O-methyltransferase (EC 2.1.1.1) and S-adenosyl-L-[methyl-3H]-methionine. Following solvent extraction of the labelled normetanephrine and 3-methoxytyramine, the amines were separated by high-performance liquid chromatography. Contents of both catecholamines in the pineal gland varied with a 24-hr rhythm. The content of norepinephrine was maximal at about 6 A.M. (lights on from 8 A.M. to 8 P.M.) and declined gradually thereafter. In contrast to the level of norepinephrine, the dopamine level was highest at about 0 A.M. and fell rapidly to reach a trough after the lights were turned on. These observations suggest that the diurnal variation of norepinephrine is generated by changes in the contents of dopamine in sympathetic nerve terminals innervating the pineal.  相似文献   

17.
18.
19.
Rat pineal serotonin N-acetyltransferase activity increases 2–3 hr after birth and then decreases again. The activity at night is higher than that during the day in rats as young as 1 to 2 days old. Administration of the beta adrenergic blocker trimepranol to newborn or 2-day old rats at night lowers the elevated serotonin N-acetyltransferase activity. Hence, the activity is under adrenergic control even in the not yet innervated pineal gland of the newborn rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号