首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Geheb  R Alvis  A Owen  E Hercker    M Cox 《The Biochemical journal》1984,218(1):221-228
We have identified a group of proteins (Mr approximately 70 000-80 000; pI approximately 5.5-6.0) in giant-toad (Bufo marinus) urinary bladders whose synthesis appears to be related to aldosterone-stimulated Na+ transport. Spironolactone, a specific mineralocorticoid antagonist in renal epithelia, inhibits the synthesis of these proteins as well as the natriferic effect of the hormone. Since a variety of other steroids (some of which are traditionally considered to be glucocorticoids) also stimulate Na+ transport in toad urinary bladders, we examined whether their natriferic activity was expressed in a fashion similar to that of aldosterone. Short-circuit current was used to measure Na+ transport, and epithelial-cell protein synthesis was detected with high-resolution two-dimensional polyacrylamide-gel electrophoresis and autoradiography. At a concentration of approximately 100 nM, dexamethasone, corticosterone and aldosterone were equinatriferic. Dexamethasone and aldosterone had identical dose-response curves, maximal and half-maximal activity being evident at concentrations of approximately 100 nM and 10 nM respectively. In contrast, at a concentration of approximately 10 nM, corticosterone had no effect on Na+ transport. The natriferic activities of these three steroids correlate with their known affinities for the putative mineralocorticoid receptor in toad urinary bladders. Natriferic concentrations of dexamethasone and corticosterone (140 nM) induced the synthesis of proteins with characteristics identical with those induced by aldosterone. Spironolactone, at an antagonist/agonist ratio of 2000:1, inhibited steroid-induced Na+ transport and the synthesis of these proteins. Thus it appears that all natriferic steroids share a common mechanism of action in toad urinary bladders. Natriferic activity can be correlated not only with relative steroid-receptor affinity but also with the induction of a specific group of epithelial-cell proteins.  相似文献   

2.
Aldosterone increases citrate synthase activity in toad urinary bladder and mammalian kidney. It has been suggested that this action is important to aldosterone stimulation of Na+ transport, and it has been used as a marker of those epithelia which are stimulated by aldosterone. We describe three continuous lines of cultured cells derived from toad urinary bladder and toad kidney in which aldosterone increases active Na+ transport but does not increase the activity of citrate synthase. Therefore, in cultured cells at least, citrate synthase is not a critical enzyme for, or a suitable marker of, aldosterone stimulation of Na+ transport.  相似文献   

3.
Summary Two methods are described by which epithelial cells from toad urinary bladders can be obtained for analysis of their intracellular water and electrolyte contents. In the first, a method similar to that described in 1968 by J. T. Gatzy and W. O. Berndt, sheets of epithelial cells are scraped from bladders after incubation in sodium Ringer's and collagenase (400 mg/liter). The scraped cells were incubated under various conditions and their composition subsequently determined. Oxygen consumption was also measured. In the second method, epithelial cells were scraped from hemibladders removed from chambers. These cells were then analyzed without further incubation. The morphology of epithelial cells obtained by each method is illustrated. Both methods yield similar results and evidence is provided that the derived intracellular values obtained truly reflect the composition of the epithelial cells.  相似文献   

4.
Paired toad urinary hemibladders were incubated with [35S]methionine in the presence (experimental) or absence (control) of aldosterone. Short-circuit current was used to monitor aldosterone-induced Na+ transport. Protein synthesis in epithelial cell subcellular fractions (cytosolic, microsomal, mitochondrial) was evaluated by gradient polyacrylamide gel electrophoresis and autoradiography. Aldosterone-induced proteins were identified in the cytosolic and microsomal fractions (70 000 and 15 000 daltons, respectively). These results represent the first demonstration of aldosterone-induced proteins in subcellular fractions of epithelial cells derived from single toad urinary hemibladders.  相似文献   

5.
6.
The association between Cl-, HCO3- and H+ transported by toad bladders was investigated. Net mucosal to serosal Cl- transport by Colombian toad bladders was stimulated by incubation in HCO3- free solutions. In addition, when Colombian or Dominican toad bladders were exposed to low HCO3- concentrations on the mucosal side and 25 mM HCO3- on the serosal side, net mucosal leads to serosal Cl- transport was induced. Neither acetazolamide nor cyanide significantly inhibited Cl- transport under these conditions. The presence of a pH gradient, more acid on the mucosal side, also induced net mucosal leads to serosal Cl- transport. The results suggest that Cl- transport by toad bladders may occur by exchange with HCO3- or OH-; this process may not require carbonic anhydrase or oxidative metabolism. The Cl- transport by toad bladders is qualitatively different from the electrogenic Cl- transport of the thick limb of Henle's loop, but may be similar to a process which occurs in other portions of the nephron.  相似文献   

7.
The effect of vasopressin on the toad urinary bladder has been shown to be mediated by cyclic AMP. It has been assumed that, as demonstrated for other systems, this involves activation of cyclic AMP-dependent protein kinase. In order to test this hypothesis we investigated the effect of vasopressin on cyclic AMP-dependent protein kinases in epithelial cells of toad bladders. About 80% of protein kinase activity and cyclic AMP-binding capacity was found to be in the cytosol. DEAE-cellulose chromatography showed a pattern of 15--20% type I and 80--85% type II cyclic AMP-dependent protein kinase. Cytosolic kinase was activated 3--4-fold by cyclic AMP with half-maximal activation at 5 . 10(-8) M. Similarly, half-maximal binding of cyclic AMP occurred at 7 . 10(-8) M. Incubation of toad bladders in Ringer's solution containing 0.1 mM 3-isobutyl-1-methylxanthine, prior to homogenization and assay, showed stable cyclic AMP-binding capacity and protein kinase ratio --cyclic AMP/+cyclic AMP. Exposure of bladders to 10 mU/ml of vasopressin for 10 min caused intracellular activation of protein kinase and decrease in cyclic AMP-binding capacity that were maintained for at least 30 min. Incubation of bladders with increasing concentrations of vasopressin (0.5--100 mU/ml) resulted in a discrepancy between a progressive increase in cyclic AMP levels and a levelling off at 10 mU/ml of vasopressin for the changes in protein kinase ratio and cyclic AMP-binding capacity. The increase in kinase ratio was due to higher activity in the absence of exogenous cyclic AMP and was fully inhibitable by a specific protein kinase inhibitor. Using Sephadex G-25-CM50 column chromatography for separation of holoenzyme and free catalytic subunit we demonstrated that the activation of protein kinase in the vasopressin-treated bladders is due to intracellular dissociation of the kinase. These results show that the effect of vasopressin on the toad bladder involves activation of a cytosolic cyclic AMP-dependent protein kinase. The time course and the dose-response curve of the kinase activation closely parallel vasopressin's effect on osmotic water flow.  相似文献   

8.
The effect of oxytetracycline and demethylchlortetracycline on aldosterone- and insulin-mediated Na+ transport (short-circuit current) were examined in toad urinary bladders mounted in modified Ussing chambers. Oxytetracycline had little or no effect on either basal or aldosterone-mediated Na+ transport. In contrast, demethylchlortetracycline markedly inhibited both basal and aldosterone-mediated Na+ transport. Furthermore, demethylchlortetracycline inhibited the aldosterone response significantly out of proportion to its effects on basal Na+ transport. Neither of the drugs had an effect on insulin-mediated Na+ transport. Consequently, the natriuresis observed in certain patients treated with demethylchlortetracyline may be related to drug-induced renal resistance to the effects of aldosterone.  相似文献   

9.
A dual-label isotope technique was used to study the effects of aldosterone upon the incorporation of amino acids into proteins of the in vitro toad urinary bladder. Following labeling, the mucosal cells were disaggregated and the mitochondria-rich and granual cells were separated. Proteins with an elevated isotope ratio were found in a plasma membrane fraction (170 000, 110 000 and 85 000 daltons) and in the cytosol (36 000 and 6 000 daltons) of the preparations enriched in mitochondria-rich cells. These effects of aldosterone were blocked by cycloheximide. There was no evidence that aldosterone had induced the incorporation of labeled amino acids into carbonic anhydrase isolated from the soluble fraction by affinity chromatography. The results suggests that the physiologic response of the toad bladder to aldosterone is related to the synthesis of both soluble and plasma membrane proteins.  相似文献   

10.
The effect of oxytetracycline and demethylchlortetracycline on aldosterone- and insulin-mediated Na+ transport (short-circuit current) were examined in toad urinary bladders mounted in modified Ussing chambers. Oxytetracycline had little or no effect on either basal or aldosterone-mediated Na+ transport. In contrast, demethylchlortetracycline markedly inhibited both basal and aldosterone-mediated Na+ transport. Furthermore, demethylchlortetracycline inhibited the aldosterone response significantly out of proportion to its effects on basal Na+ transport. Neither of the drugs had an effect on insulin-mediated Na+ transport. Consequently, the natriuresis observed in certain patients treated with demethylchlortetracyline may be related to drug-induced renal resistance to the effects of aldosterone.  相似文献   

11.
Summary Coincident with an increase in the water permeability of toad urinary bladder induced by serosal hypertonicity, a transformation of the ridge-like surface structures of the granular cells into individual microvillous structures occurs. This study was initiated to establish whether the transformation is mediated by the cytoskeletal network and, thus, can be prevented by disruption of microtubulemicrofilament function with colchicine or cytochalasin B (CB). Scanning electron microscopy revealed the characteristic branching ridges on granular cells of control bladder incubated with colchicine or CB. In contrast, transformation of ridges to discrete microvilli was observed in experimental bladders exposed to serosal hypertonicity alone or in combination with either colchicine or CB. These results suggest that the mechanism underlying hypertonicity-induced surface changes which are associated with increased water permeability does not involve either microtubules or microfilaments.  相似文献   

12.
Incubation of the mucosal surface of the toad urinary bladder with trypsin (1 mg/ml) irreversibly decreased the short-circuit current to 50% of the initial value. This decrease was accompanied by a proportionate decrease in apical Na permeability, estimated from the change in amiloride-sensitive resistance in depolarized preparations. In contrast, the paracellular resistance was unaffected by trypsinization. Amiloride, a specific blocker of the apical Na channels, prevented inactivation by trypsin. Inhibition of Na transport by substitution of mucosal Na, however, had no effect on the response to trypsin. Trypsinization of the apical membrane was also used to study regulation of Na transport by anti-diuretic hormone (ADH) and aldosterone. Prior exposure of the apical surface to trypsin did not reduce the response to ADH, which indicates that the ADH-induced Na channels were inaccessible to trypsin before addition of the hormone. On the other hand, stimulation of short-circuit current by aldosterone or pyruvate (added to substrate-depleted, aldosterone-repleted bladders) was substantially reduced by prior trypsinization of the apical surface. Thus, the increase in apical Na permeability elicited by aldosterone or substrate involves activation of Na channels that are continuously present in the apical membrane in nonconductive but trypsin-sensitive forms.  相似文献   

13.
The stimulation of sodium transport by aldosterone in target tissues requires the synthesis of both mRNA and proteins. Aldosterone-induced mRNA and proteins have been demonstrated in toad urinary bladder and rat kidney. We have isolated total RNA and poly(A)-containing RNA from hormone-treated and untreated toad bladder mucosal cells for translation in a rabbit reticulocyte lysate system. Aldosterone-induced proteins synthesized in this system have physical properties similar to those of aldosterone-induced proteins synthesized in the intact toad bladder.  相似文献   

14.
Y X Wang  L B Shi  A S Verkman 《Biochemistry》1991,30(11):2888-2894
Functional water channels are retrieved by endocytosis from the apical membrane of toad bladder granular cells in response to vasopressin [Shi, L.-B., & Verkman, A.S. (1989) J. Gen. Physiol. 94, 1101-1115]. To examine whether endocytic vesicles which contain the vasopressin-sensitive water channel fuse with acidic vesicles for entry into a lysosomal pathway, ATP-dependent acidification and osmotic water permeability were measured in endosomes from control bladders and bladders treated with vasopressin (VP) and/or phorbol myristate acetate (PMA). Endosomes were labeled with the fluid-phase markers 6-carboxyfluorescein or fluorescein-dextran. Osmotic water permeability (Pf) was measured by stopped-flow fluorescence quenching and proton ATPase activity by ATP-dependent, N-ethylmaleimide-inhibitable acidification. In a microsomal pellet, Pf was low (less than 0.002 cm/s, 20 degrees C) in labeled endocytic vesicles from control bladders but high (0.05-0.1 cm/s) in a subpopulation (50-70%) of vesicles from VP- and PMA-treated bladders. Following ATP addition, the average drop in pH was 0.1 (control), 0.3 (VP), and 0.2 (PMA) unit. Measurement of pH in individual endocytic vesicles by quantitative image analysis showed that less than 20% of vesicles from VP-treated bladders acidified by greater than 0.5 pH unit. To examine whether water channels and proton pumps were present in the same endocytic vesicles, the pH of endosomes with high and low water permeability was measured from the effect of ATP on the amplitude of the fluorescence quenching signal in response to an osmotic gradient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Summary Phenamil, an analog of amiloride, has previously been shown to bind specifically to sodium channels in toad bladder (J.L. Garvin et al.,J. Membrane Biol. 87:45–54, 1985). In this paper,3H-phenamil was used to measure sodium channel density in both isolated epithelial cells and intact bladders. From the specific binding to intact bladders, a channel density of 455±102 channels/m2 was calculated. No correlation between specific binding and the magnitude of irreversible inhibition of shortcircuit current was found. Pretreatment of intact bladders with 1 mg/ml trypsin reduced specific binding to isolated cells by 82±5%. In isolated cells, neither aldosterone nor vasopressin had any significant effect on specific phenamil binding. It is inferred that phenamil binds to both open and closed channels which may be either in the mucosal membrane or in the submembrane space. Finally, and rather surprisingly, we found that3H-phenamil binds irreversibly to the basolateral membrane at concentrations as low as 4×10–7 m. Therefore, care must be used in interpreting binding studies with amiloride or its analog at such concentrations.  相似文献   

16.
The purpose of this study was to determine whether phospholipids (PL) play a role in the adaptation to metabolic acidosis by toad urinary bladder epithelium. Toads were placed in an NH4Cl acidosis for 48 hr. Quarter bladders were removed and incubated with [32P]orthophosphate or [3H]arachidonic acid for 1 hr at 25 degrees C. PL were detected by thin layer chromatography, autoradiography, and quantitated by liquid scintillation counting or fractional amounts were determined from phosphate content and expressed as counts per minute per micromolar of total phosphate or as percentage of fraction of total PL. Incorporation of [3H]arachidonic acid into urinary bladder PL was measured in acidotic and normal toads. There was a higher rate of arachidonic acid incorporation into several PL in acidotic animals. Phosphatidic acid and phosphatidylserine fraction in acidosis was 37,705 +/- 6,821 and in normal bladders was 9,254 +/- 2,652 (P less than 0.005); phosphatidylcholine fraction in acidotic toads was 80,462 +/- 16,862 and in normal bladders was 26,892 +/- 5,198 (P less than 0.025); and the phosphatidylethanolamine (PE) fraction in acidotic was 48,665 +/- 10,998 and in normal animals was 17,441 +/- 3,905 (P less than 0.025). 32P labeling revealed a higher rate of incorporation in bladders from acidotic toads compared with normal toads. In the acidotic bladders, the phosphatidic acid and phosphatidylserine fraction was 19,754 +/- 3,597 and in normal bladders was 12,980 +/- 1,394 (P less than 0.05) and for PE acidotic bladders was 9,129 +/- 1,304 and in normal bladders was 3,285 +/- 416 (P less than 0.001). Fractional PL (reported as percentage of fraction of total PL based on total lipid phosphorus) analysis in normal toads revealed phosphatidylinositol = 8.1 +/- 0.6% and PE = 27 +/- 1.2%, whereas for acidotic toads phosphatidylinositol = 11 +/- 0.6% and PE = 32 +/- 1.0% (P less than 0.01 for both). Aldosterone, a known stimulator of acidification, had no effect on 32P incorporation into PL fractions of the bladder. The increase in PL turnover following induction of acidosis is consistent with increased membrane synthesis or turnover during metabolic acidosis and this may reflect an increased transport of vesicular H+-ATPase into the apical membrane or the result of a proliferation of acid-secreting mitochondria-rich cells or both.  相似文献   

17.
Thyroid hormone. Aldosterone antagonism in cultured epithelial cells   总被引:1,自引:0,他引:1  
Thyroid hormone (T3) has been demonstrated to inhibit the action of aldosterone on sodium transport in toad urinary bladder and rat kidney. We have examined the effect of T3 on aldosterone action and specific nuclear binding in cultured epithelial cells derived from toad urinary bladder. In cell line TB6-C, addition of 5 X 10(-8) M T3 to culture media for up to 3 days results in no change in short-circuit current or transepithelial resistance. This concentration of T3 completely inhibits the maximal increase in short-circuit current in response to 1 X 10(-7) M aldosterone. The inhibition can be demonstrated with 18 h preincubation or with simultaneous addition of T3 and aldosterone. The half-maximal concentration for the inhibition of the aldosterone effect is approx. 5 X 10(-9) M T3. T3 has no effect on cyclic AMP-stimulated short-circuit current in these cells. The effect of T3 on nuclear binding of [3H]aldosterone was examined using a filtration assay with data analysis by at least-squares curve-fitting program. Best fit was obtained with a model for two binding sites. The dissociation constants for the binding were K'd1 = (0.82 +/- 0.36) X 10(-10) M and K'd2 = (3.2 +/- 0.60) X 10(-8) M. The half-maximal concentration for aldosterone-stimulated sodium transport in these cells is approx. 1 X 10(-8) M. Analysis of nuclear aldosterone binding in cells preincubated for 18 h with 5 X 10(-8) M T3 showed a K'd1 = (0.15 +/- 0.10) X 10(-10) M and K'd2 = (3.5 +/- 0.10) X 10(-8) M. We conclude that T3 inhibits the action of aldosterone on sodium transport at a site after receptor binding in the nucleus.  相似文献   

18.
The amiloride-blockable Na+ channel was expressed in Xenopus oocytes injected with total RNA isolated from the toad urinary bladder. This system was used to investigate mechanisms that mediate the natriferic action of aldosterone. Incubation of the epithelium with aldosterone for 3 h doubled its channel activity but did not increase the ability of isolated RNA to express functional channels in oocytes. A 20-h incubation with the hormone produced an additional increase of Na+ transport across the intact epithelium and also augmented the channel activity expressed in oocytes by nearly 10-fold. The data are in agreement with our model that aldosterone enhances the apical Na+ permeability of tight epithelia by a short term activation of pre-existing channels, followed by chronic induction of new channel protein. Blocking methyl transfer reactions, previously shown to inhibit the natriferic action of aldosterone in tight epithelia, did not alter the basal or aldosterone-induced response in oocytes.  相似文献   

19.
The A6 cell line of the toad kidney is well known to form an Na+ transporting tight epithelium in culture and is often used as an experimental model for Na+ transport systems. Although it has been shown that A6 cells can convert aldosterone to polar metabolites, these metabolites have not been identified. Therefore, in this study, we tried to identify the metabolites of aldosterone formed by A6 cells in culture. A6 cells at confluence were incubated with serum-free culture media containing [3H]aldosterone. When radioactive compounds in incubation media were separated by reversed phase high-pressure liquid chromatography (HPLC), four fractions (fractions A-D) were obtained. Fraction A, a mixture of two components, comprised the majority of metabolites formed. The more polar material (fraction A-1) and the less polar material (fraction A-2) of fraction A contained 47-71 and 9-19% of total radioactivity, respectively. When incubated in cell-free media, fraction A-2 was found to be unstable and partially converted to fraction A-1. Fraction B, 0.7-1.5% of total radioactivity, and fraction C, 8-21% of total radioactivity, cochromatographed with iso-aldosterone and D-aldosterone, respectively. Fraction D, 4-8% of total radioactivity, was a mixture of two components, which cochromatographed with 3 beta,5 beta-tetrahydroaldosterone and 5 alpha-dihydroaldosterone, respectively. In order to identify fraction A-2 material, large-scale cultures were performed and fraction A-2 was separated and purified by reversed phase HPLC. The purified material was analyzed by fast atom bombardment mass spectrometry and nuclear magnetic resonance spectroscopy. These two procedures unambiguously revealed that this material was 6 beta-hydroxyaldosterone. These results demonstrate that aldosterone can be converted to at least four metabolites by the incubation with A6 cells, and that major metabolites are polar compounds, a portion of which is 6 beta-hydroxyaldosterone.  相似文献   

20.
Aldosterone-stimulated Na+ transport is mediated by new protein synthesis, but the identification of specific aldosterone-induced proteins (AIPs) has proven difficult and the cellular function of such proteins is unknown. Using high resolution two-dimensional polyacrylamide gel electrophoresis and autoradiography we have identified AIPs of similar isoelectric points (5.8 to 6.4) and molecular weights (70,000 to 80,000) in membrane-rich and cytosolic subcellular fractions of epithelial cells derived from single toad urinary bladders. The ability of actinomycin D to inhibit both AIP synthesis and aldosterone-induced Na+ transport is consistent with a role for these proteins in the natriferic action of aldosterone. In addition, since non-natriferic concentrations of cortisol did not induce similar proteins, AIP synthesis appears to be mineralocorticoid-specific. The relationship of AIP synthesis to Na+ transport was also studied. Since amiloride, which blocks Na+ transport in high resistance epithelia, did not affect the synthesis of these proteins, Na+ transport is not required for their synthesis. In addition, similar proteins were not induced when Na+ transport was stimulated by antidiuretic hormone and theophylline. Consequently, AIP synthesis is not merely a nonspecific consequence of the cellular metabolic changes associated with Na+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号