首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Riboflavine biosynthesis occurs in non-proliferating cultures of a purine-requiring strain of Escherichia coli (ATCC no. 13863). 2. No significant incorporation of radioactivity from [1-14C]glycine into either C-4a and C-9a of riboflavine or into nucleic acid purines is detected under the above conditions; appreciable incorporation of label into 5-aminoimidazole-4-carboxamide occurs. However, the label of [6-14C]guanine is incorporated significantly into C-4 of riboflavine and into nucleic acid adenine and guanine; the specific radioactivity of the riboflavine is approximately twice that of either adenine or guanine of nucleic acid. 3. These results show that a purine derivative is an obligatory intermediate in riboflavine biogenesis.  相似文献   

2.
Tomato shoots and avocado mesocarp supplied with (±)-[2-14C]-5-(1,2-epoxy-2,6,6-trimethylcyclohexyl)-3-methylpenta-cis-2-trans-4-dienoic acid metabolize it into (+)-abscisic acid and a more polar material that was isolated and identified as (?)-epi-1′(R),2′(R)-4′(S)-2-cis-xanthoxin acid. The (+)-1′(S),2′(S)-4′(S)-2-cis-xanthoxin acid recently synthesized from natural violaxanthin, has the 1′,2′-epoxy group on the opposite side of the ring to that of the 4′(S)-hydroxyl group and the compound is rapidly converted into (+)-abscisic acid. The 1′,2′-epoxy group of (?)-1′,2′-epi-2-cis-xanthoxin acid is on the same side of the ring as the 4′(S) hydroxyl group: the compound is not metabolized into abscisic acid. The configuration of the 1′,2′-epoxy group probably controls whether or not the 4′(S) hydroxyl group can be oxidized. (+)-2-cis-Xanthoxin acid is probably not a naturally occurring intermediate because a ‘cold trap’, added to avocado fruit forming [14C]-labelled abscisic acid from [2-14C]mevalonate, failed to retain [14C] label.  相似文献   

3.
Suspensions of isolated pine needle chloroplasts were shown to incorporate galactose from UDP galactose-[14C] into galactolipids. The incorporation of the label among galactolipids was always considerably higher in the monogalactosyl diglycerides than in the digalactosyl diglycerides. The galactosyl incorporation into both galactolipid fractions was optimal at pH 8.0 and was inhibited by sulphydryl reagents (p-chloromercuribenzoate, N-ethyl maleimide and CdCl2). The chloroplast preparations were also able to biosynthesize various phospholipids and galactolipids from palmitoyl-[1-14C]-CoA; the major portion of the label appeared in phosphatidyl choline. The incorporation of palmitic-[1-14C] acid into various lipids was very poor compared to that of palmitoyl-[1-14C]-CoA. However, addition of ATP and CoA markedly stimulated lipid biosynthesis from palmitic-[1-14C] acid, suggesting the presence of activating enzymes. These chloroplast suspensions did not show any de novo fatty acid synthesis.  相似文献   

4.
The metabolism of m-cresol by methanogenic cultures enriched from domestic sewage sludge was investigated. In the initial studies, bromoethanesulfonic acid was used to inhibit methane production. This led to the accumulation of 4.0 ± 0.8 mol of acetate per mol of m-cresol metabolized. These results suggested that CO2 incorporation occurred because each molecule of m-cresol contained seven carbon atoms, whereas four molecules of acetate product contained a total of eight carbon atoms. To verify this, [14C]bicarbonate was added to bromoethanesulfonic acid-inhibited cultures, and those cultures yielded [14C]acetate. Of the label recovered as acetate, 89% was found in the carboxyl position. Similar cultures fed [methyl-14C]m-cresol yielded methyl-labeled acetate. A 14C-labeled transient intermediate was detected in cultures given either m-cresol and [14C]bicarbonate or bicarbonate and [methyl-14C]m-cresol. The intermediate was identified as 4-hydroxy-2-methylbenzoic acid. In addition, another metabolite was detected and identified as 2-methylbenzoic acid. This compound appeared to be produced only sporadically, and it accumulated in the medium, suggesting that the dehydroxylation of 4-hydroxy-2-methylbenzoic acid led to an apparent dead-end product.  相似文献   

5.
Photosynthesis experiments with 14CO2 established that of 16 Droseraceae species tested Drosophylum lusitanicum incorporated the highest amount of label into plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone). Tyrosine-[β-14C] fed to Drosophyllum was shown to label plumbagin efficiently (20% incorporation). Extensive chemical degradation of the labeled naphthoquinone showed, however, that the incorporation of tyrosine was indirect, the label being distributed throughout the molecule. It was established that plumbagin and the closely related 7-methyljuglone are biosynthesized via the acetate-polymalonate pathway. Tyrosine is broken down to acetate in this tissue via the homogentisate pathway, which was demonstrated by feeding and incorporation of label into plumbagin of intermediates such as homogentisate-[14C], maleyl- and fumarylacetoacetate-[14C]. Simultaneous application of tyrosine-[β-14C] and α,α′-bipyridyl, an inhibitor of the homogentisate oxigenase, led to an accumulation of homogentisate-[14C] within the tissue. The degradation of tyrosine to acetate by Drosophyllum is not due to epiphytic bacteria since ring cleavage of tyrosine and formation of plumbagin from breakdown products occurred both within sterile grown plants and sterile cell suspension cultures. In tissue kept in darkness, plumbagin undergoes a slow turnover with a half life of about 400 hr.  相似文献   

6.
Marked polyphenol production takes place in root tissue of sweet potato, Ipomoea batatas Lam. cv. Norin 1, in response to slicing. A possible intermediate, tentatively termed compound V, of chlorogenic acid biosynthesis was isolated from the root tissue administrated with t-cinnamic acid-2-14C. Compound V was proved to be an ester whose acid moiety was t-cinnamic acid, and the hydroxyl group-bearing moiety appeared to be a carbohydrate. Compound V was suggested to be the first intermediate after t-cinnamic acid involved in the chlorogenic acid biosynthetic pathway by the following three results. (a) label of t-cinnamic acid-2-14C was distributed in compound V first, then transferred to chlorogenic acid and isochlorogenic acid, isomers of dicaffeoylquinic acid; (b) specific radioactivity of compound V increased prior to that of the fraction containing chlorogenic acid and isochlorogenic acids and decreased prior to that of the latter; and (c) label of compound V was efficiently incorporated into chlorogenic acid and isochlorogenic acid.  相似文献   

7.
Leishmania donovani promastigotes in late-stationary phase incorporated label from [2-14C]acetate and [1-14C]laurate into the mannose residues of mannan, thus confirming the presence of a functional glyoxylate bypass in these parasitic protozoa. Isolated, washed calls also incorporated label from [2-14C]acetate and [1-14C]laurate into mannan during a 1-hr incubation in buffer. Glucose had no effect on label incorporation into mannan, but glutamate caused over a four-fold increase in incorporation from [2-14C]acetate and a 2.4-fold increase from [1-14C]laurate. Staurosporine, a protein kinase inhibitor that inhibits glutamate and alanine oxidation, did not inhibit label incorporation from [2-14C]acetate into mannan. Hyperosmolality caused about a 33% inhibition of label incorporation into mannan. These results show the glyoxylate cycle and/or the subsequent biosynthetic pathway from fructose-6-phosphate to mannan are subject to regulation.  相似文献   

8.
E. coli B, filamented with 5-diazouracil (DZU)-2-14C, yielded ribonucleic acid (RNA)-(DZU-2-14C) which was converted by pancreatic ribonuclease to 14C-mono-and oligo-nucleotides. The mixed 14C-mononucleotides isolated by diethylaminoethyl-cellulose fractionation were identified as cytidylic, uridylic, and hydroxyuridylic acids, by using a combination of paper chromatography and treatment with alkaline phosphatase and cytidine deaminase. Rifampin blocked incorporation of DZU-2-14C under conditions which inhibit RNA synthesis. Division inhibition by DZU-2-14C and the incorporation into Escherichia coli B were retarded by uracil but not by other RNA bases. In a pyrimidine-requiring E. coli, DZU substituted for uracil or cytosine to an extent limited by toxic effects. Cytosine and uracil retarded these effects and retarded the incorporation of DZU-2-14C into the pyrimidineless strain. A small proportion of DZU-2-14C was converted by the latter strain into hydroxyuridylic acid, but the bulk of the incorporated label was in cytidylic and uridylic acid, as in the wild strain.  相似文献   

9.
Datura meteloides plants were fed via the roots with [1″,2′-14C]tigloyl hygroline and as a control, [2′-14C]hygrine. After a week the alkaloids were isolated and degraded. Despite hydrolysis of the putative precursor it was possible, by label ratio, to show that esterification occurs after, and not before, the tropane ring has been synthesized. Hygroline is proposed as a possible intermediate.  相似文献   

10.
Convallaria majalis plants were fed dl-methionine-[1-14C]. [1-14C, 4-3H], and [1-14C, 2-3H], S-adenosyl-l-methionine-[1-14C], and dl-homoserine-[1-14C], resulting in the formation of labeled azetidine-2-carboxylic acid (A-2-C). The complete retention of tritium relative to carbon-14 in the feeding experiment involving methionine-[1-14C, 4-3H] indicates that aspartic acid or aspartic-β-semialdehyde are not intermediates between methionine and A-2-C. However, since the A-2-C derived from methionine-[1-14C, 2-3H] had lost 95% of the tritium relative to the C-14, it is not considered that methionine or its S-adenosyl derivative are the immediate precursors of A-2-C. Our data and that of others is consistent with the intermediate formation of γ-amino-α-ketobutyric acid which on cyclization yields 1-azetine-2-carboxylic acid, A-2-C then being formed on reduction.  相似文献   

11.
Labeling studies using detached lupin (Lupinus angustifolius) nodules showed that over times of less than 3 minutes, label from [3,4-14C]glucose was incorporated into amino acids, predominantly aspartic acid, to a much greater extent than into organic acids. Only a slight preferential incorporation was observed with [1-14C]- and [6-14C]glucose, while with [U-14C]-glucose more label was incorporated into organic acids than into amino acids at all labeling times. These results are consistent with a scheme whereby the “carbon skeletons” for amino acid synthesis are provided by the phosphoenolpyruvate carboxylase reaction.  相似文献   

12.
Pyridine compounds, including nicotinic acid and nicotinamide, are key metabolites of both the salvage pathway for NAD and the biosynthesis of related secondary compounds. We examined the in situ metabolic fate of [carbonyl-14C]nicotinamide, [2-14C]nicotinic acid and [carboxyl-14C]nicotinic acid riboside in tissue segments of tea (Camellia sinensis) plants, and determined the activity of enzymes involved in pyridine metabolism in protein extracts from young tea leaves. Exogenously supplied 14C-labelled nicotinamide was readily converted to nicotinic acid, and some nicotinic acid was salvaged to nicotinic acid mononucleotide and then utilized for the synthesis of NAD and NADP. The nicotinic acid riboside salvage pathway discovered recently in mungbean cotyledons is also operative in tea leaves. Nicotinic acid was converted to nicotinic acid N-glucoside, but not to trigonelline (N-methylnicotinic acid), in any part of tea seedlings. Active catabolism of nicotinic acid was observed in tea leaves. The fate of [2-14C]nicotinic acid indicates that glutaric acid is a major catabolite of nicotinic acid; it was further metabolised, and carbon atoms were finally released as CO2. The catabolic pathway observed in tea leaves appears to start with the nicotinic acid N-glucoside formation; this pathway differs from catabolic pathways observed in microorganisms. Profiles of pyridine metabolism in tea plants are discussed.  相似文献   

13.
The incorporation of l-[U-14C]lysine and l-[U-14C]phenylalanine into piperlongumine has been demonstrated in Piper longum. The subsequent stepwise degradation to methyl-(3,4,5-trimethoxyphenyl)-propanoate and δ-aminovaleric acid revealed that the C6-C3 moiety of the alkamide arises from phenylalanine; the heterocyclic ring is biosynthesised from lysine. It has also been shown that dl-[2-14C]tyrosine and [2-14C]sodium acetate are poor precursors of piperlongumine.  相似文献   

14.
Administration of 5-hydroxy[1-14C]-and [4-14C]levulinic acid to Helleborus foetidus led to the isolation of [1-14C]- and [4-14C]protoanemonin, respectively. There was also incorporation of radioactivity into the four glucosides ranunculin, isoranunculin, ranuncoside and ranunculoside. Acid hydrolysis of radioactive ranuncoside gave labelled 5-hydroxylevulinic acid (HKV). A study of the incorporation of various 14C-labelled tracers into protoanemonin suggested that HKV is formed in higher plants by a new reduction of 2-ketoglutarate (2-KG) without free 4,5-dioxovalerate (DOVA) as an intermediate. A scheme for the biosynthesis of the antibiotic protoanemonin and its glucosidic precursors is proposed. It is shown that 5-(β-d-glucopyranosyloxy)levulinic acid could be the genuine precursor of all the compounds studied.  相似文献   

15.
Intact cells of Flavobacterium dehydrogenans grown on glucose or acetate did not incorporate mevalonic acid-[14C]. After treatment with lysozyme the protoplasts were lysed by sonication in a dilute medium containing mevalonic acid-[14C] and the cell-free system produced incorporated label into uncyclized C40, monocyclic C45 and bicyclic C50 carotenoids of which decaprenoxanthin was the most abundant.With mevalonate-[2-14C,4R-4-3H1] the 14C:3H ratios of the carotenoids showed that the hydrogen atoms at C-2 and C-6 of the ring and that at C-3 of the 1-hydroxy, 2-methyl but-2-ene-4-yl residues of decaprenoxanthin were derived from the 4-pro-R hydrogen atom of mevalonic acid.Mevalonate-[2-14C,2R-2-3H1] and mevalonate-[2-14C,2S-2-3H1] gave ratios which showed that the C-4 hydrogen atoms of decaprenoxanthin were derived from the 2-pro-S hydrogen atom of mevalonic acid.  相似文献   

16.
Biosynthesis of securinine was studied by incorporation experiments in Securinega suffruticosa. Among presumed precursors tested, lysine, cadaverine, and tyrosine showed the highest incorporation into securinine. Degradation experiments revealed that cadaverine-[1,5-14C] labelled specifically the piperidine ring of securinine and the radioactivity from dl-tyrosine-[2-14C] was introduced into the C-11 lactone carbonyl. Experiments with L-tyrosine-[U-14C] and L-tyrosine-[3′,5′-3H; U-14C] prove that the remaining C6Sz.sbnd;C2 moiety is derived from the aromatic ring and the C-2 and C-3 or tyrosine.  相似文献   

17.
Evidence was obtained that Penicillium chrysogenum can produce linolenate by two biosynthetic pathways, i.e., by elongation of a shorter trienoic acid as well as direct desaturation of 18-C acids. In oxygen deficient cultures, exogenous hexadecatrienoate stimulated [1-14C]acetate incorporation into labeled octadecatrienoate and [U-14C]hexadecatrienoate with nonlabeled acetate yielded linolenate that had relatively little label in the 1-C position. With [1-14C]acetate as the only added substrate, oxygen deficiency inhibited incorporation of label into monoenoic and dienoic acids but not into trienoic acids. Incorporation of the [U-14C]linoleate into linolenate also was inhibited.In aerated cultures, 1-14C-label from laurate, palmitate, stearate, oleate, linoleate, and hexadecatrienoate was readily incorporated into linolenate. Decarboxylation and oxidation studies indicated that the longer acids were incorporated largely intact. [U-14C]Linoleate was incorporated into linolenate in which the fraction of label in 1-C was similar to that of the substrate. These data suggest that this mold has broader synthetic capabilities than do some chloroplast systems for the biosynthesis of linolenate.  相似文献   

18.
Earlier observations of Dawson on the relative incorporation of [2-3H]- and [6-3H]-nicotinic acid into nicotine have been confirmed in intact Nicotiana tabacum plants. All the tritium in the nicotine derived from [2-3H]-nicotinic acid was located at C-2 of the pyridine ring. However the radioactive nicotine derived from [6-3H]-nicotinic acid was not labelled specifically at C-6 with tritium. By carrying out feeding experiments with [6-14-C, 2-3H]- and [6-14C, 3H]-nicotinic acids, it was established that there was very little loss of tritium from C-2 and C-6 of nicotinic acid during 5 days of metabolism in the tobacco plant.  相似文献   

19.
The metabolism of myo-inositol-2-14C, d-glucuronate-1-14C, d-glucuronate-6-14C, and l-methionine-methyl-14C to cell wall polysaccharides was investigated in excised root-tips of 3 day old Zea mays seedlings. From myo-inositol, about one-half of incorporated label was recovered in ethanol insoluble residues. Of this label, about 90% was solubilized by treatment, first with a preparation of pectinase-EDTA, then with dilute hydrochloric acid. The only labeled constituents in these hydrolyzates were d-galacturonic acid, d-glucuronic acid, 4-O-methyl-d-glucuronic acid, d-xylose, and l-arabinose, or larger oligosaccharide fragments containing these units. Medium external to excised root-tips grown under sterile conditions in myo-inositol-2-14C contained labeled polysaccharide.  相似文献   

20.
The rate of incorporation of 14C from acetate-1-14C into fatty acids by carrot root discs, 18 hours after inoculation with Ceratocystis fimbriata, was 9-fold greater than that in freshly cut discs. The rate in discs treated with water or Ethrel was 3-fold greater. The rate of incorporation of 14C from glucose-U-13C into fatty acids was 3-fold greater 18 hours after any of the above treatments. The rate of 14C incorporation from malonate-2-14C into fatty acids 24 hours after inoculation with C. fimbriata or treatment with water was 25 and 60%, respectively, of that in freshly cut discs. Linoleic acid was the principal fatty acid in carrot root, but incorporation of 14C from acetate-1-14C into the acid was low until 18 hours after inoculation with C. fimbriata or treatment with Ethrel. Turnover rates of the fatty acids appeared low and were similar for all treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号