首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoxyl (ISO) and thiacetazone (TAC), two prodrugs once used in the clinical treatment of tuberculosis, have long been thought to abolish Mycobacterium tuberculosis (M. tuberculosis) growth through the inhibition of mycolic acid biosynthesis, but their respective targets in this pathway have remained elusive. Here we show that treating M. tuberculosis with ISO or TAC results in both cases in the accumulation of 3-hydroxy C18, C20, and C22 fatty acids, suggestive of an inhibition of the dehydratase step of the fatty-acid synthase type II elongation cycle. Consistently, overexpression of the essential hadABC genes encoding the (3R)-hydroxyacyl-acyl carrier protein dehydratases resulted in more than a 16- and 80-fold increase in the resistance of M. tuberculosis to ISO and TAC, respectively. A missense mutation in the hadA gene of spontaneous ISO- and TAC-resistant mutants was sufficient to confer upon M. tuberculosis high level resistance to both drugs. Other mutations found in hypersusceptible or resistant M. tuberculosis and Mycobacterium kansasii isolates mapped to hadC. Mutations affecting the non-essential mycolic acid methyltransferases MmaA4 and MmaA2 were also found in M. tuberculosis spontaneous ISO- and TAC-resistant mutants. That MmaA4, at least, participates in the activation of the two prodrugs as proposed earlier is not supported by our biochemical evidence. Instead and in light of the known interactions of both MmaA4 and MmaA2 with HadAB and HadBC, we propose that mutations affecting these enzymes may impact the binding of ISO and TAC to the dehydratases.  相似文献   

2.
Mycobacterium tuberculosis represents a severe threat to human health worldwide. Therefore, it is important to expand our knowledge of vital mycobacterial processes, such as that effected by fatty acid synthase type 2 (FASII), as well as to uncover novel ones. Mycobacterial FASII undertakes mycolic acid biosynthesis, which relies on a set of essential enzymes, including 3-oxoacyl-AcpM reductase FabG1/Rv1483. However, the M. tuberculosis genome encodes four additional FabG homologs, designated FabG2–FabG5, whose functions have hitherto not been characterized in detail. Of the four candidates, FabG4/Rv0242c was recently shown to be essential for the survival of M. bovis BCG. The present work was initiated by assessing the suitability of yeast oar1Δ mutant cells lacking mitochondrial 3-oxoacyl-ACP reductase activity to act as a surrogate system for expressing FabG1/MabA directed to the mitochondria. Mutant yeast cells producing this targeted FabG1 variant were essentially wild type for all of the chronicled phenotype characteristics, including respiratory growth on glycerol medium, cytochrome assembly and lipoid acid production. This indicated that within the framework of de novo fatty acid biosynthesis in yeast mitochondria, FabG1 was able to act on shorter (C4) acyl substrates than was previously proposed (C8–20) during mycolic acid biosynthesis in M. tuberculosis. Thereafter, FabG2–FabG5 were expressed as mitochondrial proteins in the oar1Δ strain, and FabG4 was found to complement the mutant phenotype and contain high levels of 3-oxoacyl-thioester reductase activity. Hence, like FabG1, FabG4 is also an essential, physiologically functional 3-oxoacyl-thioester reductase, albeit the latter’s involvement in mycobacterial FASII remains to be explored.  相似文献   

3.
The resurgence of tuberculosis and the emergence of multidrug-resistant mycobacteria necessitate the development of new antituberculosis drugs. The biosynthesis of mycolic acids, essential elements of the mycobacterial envelope, is a good target for chemotherapy. Species of the Mycobacterium tuberculosis complex synthesize oxygenated mycolic acids with keto and methoxy functions. In contrast, the fast-growing Mycobacterium smegmatis synthesizes oxygenated mycolic acids with an epoxy function. We describe the isolation and sequencing of a cluster of four genes from Mycobacterium bovis bacillus Calmette–Guérin (BCG), coding for methyl transferases, and which, when transferred into M. smegmatis , allow the synthesis of ketomycolic acid, in addition to an as yet undescribed mycolic acid, hydroxymycolic acid. These oxygenated mycolic acids, unlike the regular mycolic acids of M. smegmatis , and similar to the mycolic acids of M. bovis , are highly cyclopropanated. Furthermore, there is a perfect match between the structures of the keto- and the hydroxy-mycolic acids. We propose a biosynthetic model in which there is a direct relationship between these two types of mycolic acid.  相似文献   

4.
The survival of Mycobacterium tuberculosis depends on mycolic acids, very long α-alkyl-β-hydroxy fatty acids comprising 60–90 carbon atoms. However, despite considerable efforts, little is known about how enzymes involved in mycolic acid biosynthesis recognize and bind their hydrophobic fatty acyl substrates. The condensing enzyme KasA is pivotal for the synthesis of very long (C38–42) fatty acids, the precursors of mycolic acids. To probe the mechanism of substrate and inhibitor recognition by KasA, we determined the structure of this protein in complex with a mycobacterial phospholipid and with several thiolactomycin derivatives that were designed as substrate analogs. Our structures provide consecutive snapshots along the reaction coordinate for the enzyme-catalyzed reaction and support an induced fit mechanism in which a wide cavity is established through the concerted opening of three gatekeeping residues and several α-helices. The stepwise characterization of the binding process provides mechanistic insights into the induced fit recognition in this system and serves as an excellent foundation for the development of high affinity KasA inhibitors.  相似文献   

5.
Mycolic acids are vital components of the Mycobacterium tuberculosis cell wall, and enzymes involved in their formation represent attractive targets for the discovery of novel anti-tuberculosis agents. Biosynthesis of the fatty acyl chains of mycolic acids involves two fatty acid synthetic systems, the multifunctional polypeptide fatty acid synthase I (FASI), which performs de novo fatty acid synthesis, and the dissociated FASII system, which consists of monofunctional enzymes, and acyl carrier protein (ACP) and elongates FASI products to long chain mycolic acid precursors. In this study, we present the initial characterization of purified KasA and KasB, two beta-ketoacyl-ACP synthase (KAS) enzymes of the M. tuberculosis FASII system. KasA and KasB were expressed in E. coli and purified by affinity chromatography. Both enzymes showed activity typical of bacterial KASs, condensing an acyl-ACP with malonyl-ACP. Consistent with the proposed role of FASII in mycolic acid synthesis, analysis of various acyl-ACP substrates indicated KasA and KasB had higher specificity for long chain acyl-ACPs containing at least 16 carbons. Activity of KasA and KasB increased with use of M. tuberculosis AcpM, suggesting that structural differences between AcpM and E. coli ACP may affect their recognition by the enzymes. Both enzymes were sensitive to KAS inhibitors cerulenin and thiolactomycin. These results represent important steps in characterizing KasA and KasB as targets for antimycobacterial drug discovery.  相似文献   

6.
Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61) or HadC (at Val85, Lys157 or Thr123), which are components of the β-hydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors.  相似文献   

7.
The type II fatty acid synthase system of mycobacteria is involved in the biosynthesis of major and essential lipids, mycolic acids, key-factors of Mycobacterium tuberculosis pathogenicity. One reason of the remarkable survival ability of M. tuberculosis in infected hosts is partly related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate synthesis of these lipids in response to environmental changes are unknown. We demonstrate here that HadAB and HadBC dehydratases of this system are phosphorylated by Ser/Thr protein kinases, which negatively affects their enzymatic activity. The phosphorylation of HadAB/BC is growth phase-dependent, suggesting that it represents a mechanism by which mycobacteria might tightly control mycolic acid biosynthesis under non-replicating condition.  相似文献   

8.

Background

Mycolic acids are a complex mixture of branched, long-chain fatty acids, representing key components of the highly hydrophobic mycobacterial cell wall. Pathogenic mycobacteria carry mycolic acid sub-types that contain cyclopropane rings. Double bonds at specific sites on mycolic acid precursors are modified by the action of cyclopropane mycolic acid synthases (CMASs). The latter belong to a family of S-adenosyl-methionine-dependent methyl transferases, of which several have been well studied in Mycobacterium tuberculosis, namely, MmaA1 through A4, PcaA and CmaA2. Cyclopropanated mycolic acids are key factors participating in cell envelope permeability, host immunomodulation and persistence of M. tuberculosis. While several antitubercular agents inhibit mycolic acid synthesis, to date, the CMASs have not been shown to be drug targets.

Methodology/Principle Findings

We have employed various complementary approaches to show that the antitubercular drug, thiacetazone (TAC), and its chemical analogues, inhibit mycolic acid cyclopropanation. Dramatic changes in the content and ratio of mycolic acids in the vaccine strain Mycobacterium bovis BCG, as well as in the related pathogenic species Mycobacterium marinum were observed after treatment with the drugs. Combination of thin layer chromatography, mass spectrometry and Nuclear Magnetic Resonance (NMR) analyses of mycolic acids purified from drug-treated mycobacteria showed a significant loss of cyclopropanation in both the α- and oxygenated mycolate sub-types. Additionally, High-Resolution Magic Angle Spinning (HR-MAS) NMR analyses on whole cells was used to detect cell wall-associated mycolates and to quantify the cyclopropanation status of the cell envelope. Further, overexpression of cmaA2, mmaA2 or pcaA in mycobacteria partially reversed the effects of TAC and its analogue on mycolic acid cyclopropanation, suggesting that the drugs act directly on CMASs.

Conclusions/Significance

This is a first report on the mechanism of action of TAC, demonstrating the CMASs as its cellular targets in mycobacteria. The implications of this study may be important for the design of alternative strategies for tuberculosis treatment.  相似文献   

9.
Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles'' heel of the bacillus at all its growing stages.  相似文献   

10.
Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression), extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB). Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.  相似文献   

11.
12.
Hua Li  Gerwald Jogl 《Proteins》2013,81(3):538-543
Decaprenylphosphoryl‐β‐D ‐ribose 2'‐epimerase (DprE1) is an essential enzyme in the biosynthesis of cell wall components and a target for development of anti‐tuberculosis drugs. We determined the crystal structure of a truncated form of DprE1 from Mycobacterium smegmatis in two crystal forms to up to 2.35 Å resolution. The structure extends from residue 75 to the C‐terminus and shares homology with FAD‐dependent oxidoreductases of the vanillyl‐alcohol oxidase family including the DprE1 homologue from M. tuberculosis. The M. smegmatis DprE1 structure reported here provides further insights into the active site geometry of this tuberculosis drug target. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C20 fatty acids to form C60-to-C90 mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Δ cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Δ cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C4 to C8) than was previously thought (>C12). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.  相似文献   

14.
Abstract: This report documents asymptomatic infections of Mycobacterium kansasii in four of five tuberculin positive squirrel monkeys (Saimiri sciureus sciureus). The mycobacterial DNA amplified by polymerase chain reaction (PCR) from a bronchial lymph node had no affinity for the species specific probes of M. tuberculosis, M. avium, and M. intracellular, thus allowing the presumptive diagnosis of an atypical mycobacterial infection. Infection by Mycobacterium kansasii was confirmed by culture of bronchial lymph nodes from three monkeys. The source of the infection was never identified.  相似文献   

15.
The final step in mycolic acid biosynthesis in Mycobacterium tuberculosis is catalysed by mycolyl reductase encoded by the Rv2509 gene. Sequence analysis and homology modelling indicate that Rv2509 belongs to the short-chain fatty acid dehydrogenase/reductase (SDR) family, but with some distinct features that warrant its classification as belonging to a novel family of short-chain dehydrogenases. In particular, the predicted structure revealed a unique α-helical C-terminal region which we demonstrated to be essential for Rv2509 function, though this region did not seem to play any role in protein stabilisation or oligomerisation. We also show that unlike the M. smegmatis homologue which was not essential for growth, Rv2509 was an essential gene in slow-growing mycobacteria. A knockdown strain of the BCG2529 gene, the Rv2509 homologue in Mycobacterium bovis BCG, was unable to grow following the conditional depletion of BCG2529. This conditional depletion also led to a reduction of mature mycolic acid production and accumulation of intermediates derived from 3-oxo-mycolate precursors. Our studies demonstrate novel features of the mycolyl reductase Rv2509 and outline its role in mycobacterial growth, highlighting its potential as a new target for therapies.  相似文献   

16.
The appearance multi-drug resistant Mycobacterium tuberculosis (MTB) throughout the world has prompted a search for new, safer and more active agents against tuberculosis. Based on studies of the biosynthesis of mycobacterial cell wall polysaccharides, octyl 5-O-(α- -arabinofuranosyl)-α- -arabinofuranoside analogues were synthesized and evaluated as inhibitors for M. tuberculosis and Mycobacterium avium. A cell free assay system has been used for the evaluation of these disaccharides as substrates for mycobacterial arabinosyltransferase activity.  相似文献   

17.
Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis‐1 and DLP‐1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down‐regulating the expression of pexophagy associated proteins (p‐AMPKα, p‐ULK‐1, Atg5, Atg7, Beclin‐1, LC3‐II, TFEB and Keap‐1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor‐γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.  相似文献   

18.
19.
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non‐synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species‐specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia‐related genes between M. bovis and M. tuberculosis.  相似文献   

20.

   

Fosmidomycin is a phosphonic antibiotic which inhibits 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr), the first committed step of the non-mevalonate pathway of isoprenoid biosynthesis. In Mycobacterium tuberculosis Dxr is encoded by Rv2870c, and although the antibiotic has been shown to inhibit the recombinant enzyme [1], mycobacteria are intrinsically resistant to fosmidomycin at the whole cell level. Fosmidomycin is a hydrophilic molecule and in many bacteria its uptake is an active process involving a cAMP dependent glycerol-3-phosphate transporter (GlpT). The fact that there is no glpT homologue in the M. tuberculosis genome and the highly impervious nature of the hydrophobic mycobacterial cell wall suggests that resistance may be due to a lack of cellular penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号