首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A homo-tetrameric ca. 140-kDa cystathionine γ-lyase was purified to homogeneity from Lactobacillus fermentum DT41 by four chromatographic steps. This was the first enzyme responsible for amino acid catabolism purified from lactobacilli. The activity is pyridoxal-5'-phosphate dependent and the enzyme catalyzes the α,γ-elimination reaction of l -cystathionine producing l -cysteine, ammonia and α-ketobutyrate. The cystathionine γ-lyase produced a free thiol group, a keto acid component and ammonia from several amino acids, including l -cysteine and methionine, and amino acid derivatives. l -Cystine was the best substrate. The enzyme was stable in the conditions of cheese ripening and may contribute to the biosynthesis of sulfur-containing compounds.  相似文献   

2.
Enzyme preparations obtained from the mycelium of Aspergillus species broke down methionine by co-dissimilation. The deaminase and demethiolase activities of crude extracts were increased 100-fold by precipitation with (NH(4))(2)SO(4) and column chromatography on diethylaminoethyl cellulose. The enzyme acted on d-methionine but not on l-methionine. The enzyme was labile: it was inactivated by oxygen and ascorbic acid but ethylenediaminetetraacetic acid and mercaptoethanol preserved its activity. Enzyme activity decreased even at 4 and -30 C and was lost rapidly above 45 C. It was most rapid at 35 C and at pH 8.0 to 9.0. For the following reasons, it was concluded that deamination and demethiolation of methionine were effected by the same enzyme: both activities increased equally at each stage of purification; ammonia, methanethiol, and alpha-keto butyric acid were formed in amounts equivalent to the amount of methionine dissimilated; the K(m) and optimal pH for formation of both keto acid and methanethiol were the same; both activities remained in the same fractions that were separated by electrophoresis and the activities were equivalent. The purified enzyme demethiolated alpha-keto methionine and alpha-hydroxy methionine and split the sulfur linkage of ethionine but did not cleave cystathionine. Few amino acids were deaminated. The enzyme was sensitive to some carbonyl and sulfhydryl reagents and was relatively insensitive to heavy metals other than Hg(++). The K(m) was 1.3 x 10(-3) to 1.5 x 10(-3)m at pH 7.0. No requirement for cofactors was noted, and attempts to dissociate the enzyme, including dialysis with hydroxylamine, were unsuccessful.  相似文献   

3.
Ethylene biosynthesis in fruit tissues   总被引:13,自引:8,他引:5       下载免费PDF全文
Tracer studies with avocado tissues indicate that methionine is converted to ethylene at stages of the climacteric rise and the climacteric peak, but not at the preclimacteric stage. The results suggest that the control of ethylene biosynthesis is at a step after methionine is synthesized. The endogenous content of methionine was found to be so low that methionine must be actively turned over for ethylene biosynthesis during the stages when the rate of ethylene production is high. Oxygen was found to be essential for this conversion, indicating that at least one of the steps in conversion of methionine to ethylene is oxygen-dependent. The ability of methionine and its keto analogue (α-keto-γ-methylthiobutyric acid) to serve as ethylene precursors by apple tissues was compared. Chemical and kinetic evidence support the view that methionine is a closer precursor of ethylene than its keto analogue.  相似文献   

4.
Balish, Edward (Argonne National Laboratory, Argonne, Ill.), and Stanley K. Shapiro. Cystathionine as a precursor of methionine in Escherichai coli and Aerobacter aerogenes. J. Bacteriol. 92:1331-1336. 1966.-Cystathionine has been shown to be a precursor of methionine biosynthesis in Escherichia coli and Aerobacter aerogenes. A double enzyme assay was developed to show the formation of homocysteine from cystathionine. The results obtained support the concept that cystathionine serves as a precursor of methionine via the intermediate formation of homocysteine. The latter compound is methylated by the homocysteine methyltransferase of these microorganisms. Sulfhydryl and keto acid assays were used to demonstrate cystathionase activity. Methionine represses both homocysteine methyltransferase formation and cystathionase formation. However, the presence of methionine in reaction mixtures resulted in product inhibition of homocysteine methyltransferase activity, but not of cystathionase activity.  相似文献   

5.
1. Serine transacetylase, O-acetylserine sulphydrylase and beta-cystathionase were purified from Paracoccus denitrificans strain 8944. 2. Serin transacetylase was purified 150-fold. The enzyme has a pH optimum between 7.5 and 8.0, is specific for L-serine and is inhibited by sulphydryl-group reagents. The apparent Km values for serine and acetyl-CoA are 4.0 - 10(-4) and 1.0 - 10(-4) M, respectively. Serine transacetylase is strongly inhibited by cysteine. 3. O-Acetylserine sulphydrylase was purified 450-fold. The enzymes has a sharp pH optimum at pH 7.5. In addition to catalysing the synthesis of cysteine, O-acetylserine sulphydrylase catalyses the synthesis of selenocysteine from O-acetylserine and selenide. The Km values for sulphide and O-acetylserine are 2.7 - 10(-3) and 1.25 - 10(-3) M, respectively. The enzyme was stimulated by pyridoxal phosphate and was inhibited by cystathionine, homocysteine and methionine. 4. beta-Cystathionase was purified approx. 50-fold. beta-Cystathionase has a pH optimum between pH 9.0 and 9.5, is sensitive to sulphydryl-group reagents, required pyridoxal phosphate for maximum activity and has an apparent Km for cystathionine of 4.2 - 10 (-3) M. beta-Cystathionase also catalyses the release of keto acid from lanthionine, djenkolic acid and cystine. Cysteine, O-acetylserine, homocysteine and glutathione strongly inhibit beta-cystathionase activity and homocysteine and methionine represses enzyme activity. 5. O-Acetylserine lyase was identified in crude extracts of Paracoccus denitrificans. The enzyme is specific for O-acetyl-L-serine, requires pyridoxal phosphate and is inhibied by KCN and hydroxylamine. The enzyme has a high Km value for O-acetylserine (50--100 mM).  相似文献   

6.
Polyclonal antibodies directed against the dihydrolipoyl transacylase (E2) and alpha subunit of branched-chain alpha-keto acid decarboxylase (E1 alpha) components of the bovine branched-chain keto acid dehydrogenase complex were shown to cross-react with the E2 and E1 alpha polypeptides of the enzyme complex of different rat tissues. Phosphorylation of the branched-chain keto acid dehydrogenase complex resulted in inhibition of enzyme activity concomitant with phosphate incorporation into the E1 alpha polypeptide. Phosphorylation of E1 alpha slowed its rate of migration through sodium dodecyl sulfate-polyacrylamide gels. This permitted resolution of the phosphorylated and unphosphorylated forms of E1 alpha on immunoblots. Liver and skeletal muscle mitochondria were prepared from rats consuming 6, 20, or 50% casein diets. The enzyme complex in mitochondria was measured by radioisotopic enzyme assay and immunoassay. Liver branched-chain keto acid dehydrogenase was 25% active in rats consuming 6% casein diets; whereas in rats consuming 20 or 50% casein diets, the liver enzyme was 82 or 100% active, respectively. Branched-chain keto acid dehydrogenase of muscle was 10, 13, and 22% active, respectively, in rats consuming 6, 20, and 50% casein diets. The amount of protein consumed by rats did not affect the total amount of the enzyme complex per unit of mitochondrial protein as measured by either the radioisotopic assay (enzyme activity) or the immunoassay. However, the protein intake of rats did affect activity of the enzyme kinase in liver. Liver branched-chain keto acid dehydrogenase kinase was more active in rats consuming 6% casein than in those fed chow or 50% casein diets. The amount of protein consumed by rats thus influences the enzyme activity in liver and muscle by affecting the reversible phosphorylation mechanism and not by induction of branched-chain keto acid dehydrogenase.  相似文献   

7.
Branched-chain keto acid dehydrogenase, an enzyme in the common pathway of branched-chain amino acid catabolism of Pseudomonas putida, is a multienzyme complex which catalyzes the oxidative decarboxylation of branched-chain keto acids. The objective of the present study was to isolate strains with mutations of this and other keto acid dehydrogenases and to map the location of the mutations on the chromosome of P. putida. Several strains with mutations of branched-chain keto acid dehydrogenase, two pyruvate and two 2-ketoglutarate dehydrogenase, were isolated, and the defective subunits were identified by biochemical analysis. By using a recombinant XYL-K plasmid to mediate conjugation, these mutations were mapped in relation to a series of auxotrophic and other catabolic mutations. The last time of entry recorded was at approximately 35 min, and the data were consistent with a single point of entry. Branched-chain keto acid dehydrogenase mutations affecting E1, E1 plus E2, and E3 subunits mapped at approximately 35 min. One other strain affected in the common pathway was deficient in branched-chain amino acid transaminase, and the mutation was mapped at 16 min. The mutations in the two pyruvate dehydrogenase mutants, one deficient in E1 and the other deficient in E1 plus E2, mapped at 22 minutes. The 2-ketoglutarate dehydrogenase mutation affecting the E1 subunit mapped at 12 minutes. A 2-ketoglutarate dehydrogenase mutant deficient in E3 was isolated, but the mutation proved too leaky to map.  相似文献   

8.
The present study investigated (1) the free amino acid (FAA) composition in semen of rainbow trout Oncorhynchus mykiss and carp Cyprinus carpio, (2) enzyme systems involved in amino acid metabolism and (3) the effect of amino acids on sperm viability under in vitro storage conditions. In the seminal plasma of O. mykiss, the main FAAs were arginine, glutamic acid, isoleucine, leucine, methionine and proline, in spermatozoa cysteine, arginine and methionine. In the seminal plasma of C. carpio, the main FAAs were alanine, arginine, cysteine, glutamic acid, histidine, leucine, lysine, methionine and proline, in spermatozoa arginine, glutamic acid, histidine, leucine and lysine. When spermatozoa were incubated for 48 h together with the seminal plasma, the quantitative amino acid pattern changed in both species indicating their metabolism. In spermatozoa and seminal plasma of O. mykiss and C. carpio, the following enzymes were found to be related to amino acid metabolism: transaminases (specific for alanine, aspartate, isoleucine and leucine), decarboxylases (specific for valine and lysine), glutamate dehydrogenase and α‐keto acid dehydrogenases (substrates: 3‐methyl‐2‐oxovaleric acid and 4‐methyl‐2‐oxovalerate). These data demonstrate that amino acid catabolism by transamination, decarboxylation and oxidative deamination can occur in semen of the two species. Also activity of methionine sulphoxide reductase was detected, an enzyme which reduces methionine sulphoxide to methionine. This reaction plays an important role in antioxidant defence. To determine the effect of FAAs on the sperm viability, C. carpio and O. mykiss spermatozoa were incubated in sperm motility inhibiting saline solution containing different amino acids. Methionine had a positive effect on the sperm viability in both species. Taken together this result with the in vivo occurrence of methionine and of methionine reductase in semen, it can be assumed that this amino acid plays an important role in antioxidant defence. Also isoleucine in O. mykiss and leucine in C. carpio had a positive effect on sperm viability. As seminal plasma and spermatozoa of the two species exhibit enzyme activities to catabolize leucine and isoleucine, they might serve as additional energy resources especially during prolonged incubation and storage periods.  相似文献   

9.
Aspartate aminotransferase (AAT) catalyzes amino group transfer from glutamate (Glu) or aspartate (Asp) to a keto acid acceptor-oxaloacetate (OA) or alpha-ketoglutarate (KG), respectively. Data presented here show that AAT catalyzes two partial reactions resulting in isotope exchange between 3H-labeled Glu or 3H-labeled Asp and the cognate keto acid in the absence of the keto acid acceptor required for the net reaction. Tritiated keto acid product was detected by release of 3H2O from C-3 during base-induced enolization. Tritium released directly from C-2 (or C-3) by the enzyme was also evaluated and is a small fraction of that released because of exchange to the keto acid pool. Exchange is dependent on AAT concentration, time-dependent, proportional to the amino-to-keto acid ratio, and blocked by aminooxyacetate (AOA), an AAT inhibitor. Enzymatic conversion of [3H]KG to Glu by glutamic dehydrogenase (GDH) or of [3H]OA to malate by malic dehydrogenase (MDH) "protects" the label from release by base, showing that base-induced isotope release is from keto acid rather than a result of release during the exchange process. AAT isotope exchange is discussed in the context of the glutamate/glutamine shuttle hypothesis for astrocyte/neuron carbon cycling.  相似文献   

10.
A new nuclease (Rn) isolated from rye nucleus was applied for the structural studies of methionine initiator transfer ribonucleic acid and ribosomal 5S rRNA from yellow lupin seeds. The enzyme shows high specificity for some regions of both RNAs. The dihydrouridine and ribothymidine loops which are supposed to be involved in the tertiary interactions of the methionine initiator tRNA were hydrolysed. The anticodon loop is not digested at all. 5S rRNA was digested in single stranded regions (loops). The cleavage pattern of the tRNA and 5S rRNA obtained with Rn enzyme, suggests not only the high specificity toward single stranded regions, but also some dependence on their tertiary structure.  相似文献   

11.
An ether-extractable product formed from 5′-methylthioadenosine by extracts of malignant murine lymphocytic cells is shown to be 2-keto-4-methylthiobutyric acid. When 5′-methylthio [U-14C]adenosine was used as substrate, the product was labelled, confirming earlier reports that carbons of the keto acid are derived from carbons of the ribose. When hydroxylamine was added to the reaction mixture, the ketomethylthiobutyric acid was trapped as the oxime. When glutamine was added, the main product was methionine.  相似文献   

12.
Summary D-Amino acid oxidase has been isolated and purified in a simple procedure to homogeneity fromTrigonopsis variabilis. The enzyme was able to oxidatively deaminate cephalosporin C to keto adipic 7-aminocephalosporanic acid. The molecular weight of the native enzyme was estimated to be 86000. The enzyme was shown to contain two identical subunits with each subunit carrying probably one molecule of iron. The Km values determined for the substrates cephalosporin C, D-phenylalanine, D-alanine, D-methionine and D-leucine were 13, 10, 76, 0.76 and 0.12 mM, respectively.Enzyme yield was shown to increase on growth of the organism in medium supplemented with DL-methionine.  相似文献   

13.
A pantothenate-methionine auxotroph (J741) of Pseudomonas denitrificans was isolated whose growth requirement for methionine could not be satisfied by known precursors of the amino acid, including homocysteine. However, some "methyl rich" compounds such as betaine and dimethylacetothetin (DMT) could satisfy the requirement. S-Methyl-methionine and S-adenosylmethionine were ineffective. Extracts were found to contain an enzyme, betaine-homocysteine transmethylase (BHTase), that uses betaine or DMT as a methyl donor and homocysteine as an acceptor to produce methionine. Growth of J741 in methionine leads to a total repression of the BHTase, whereas the use of DMT leads to a three- to sixfold stimulation of enzyme synthesis compared to betaine-grown cells. The pantothenate requirement is unrelated to the methionine auxotrophy, since the growth of other single auxotrophic mutants as well as revertants of J741 still have their methionine requirement satisfied by betaine or DMT. Another methionine auxotroph that could not use betaine for growth was devoid of BHTase activity.  相似文献   

14.
Thymidylate synthetase from Lactobacillus casei was S-carboxymethylated and degraded by treatment with cyanogen bromide. Although the protein contains 6 methionine residues, only 5 cyanogen bromide peptides were obtained due to the presence of 1 methionine on the NH2 terminus and another adjacent to a threonine residue which was resistant to cleavage. The peptides were isolated by differential extraction, first with ammonium acetate, then pyridine acetate, and finally the residue was solubilized with 50% acetic acid. Each peptide was further purified to homogeneity by Bio-Gel chromatography. The size of the peptides from the amino to carboxyl end of the enzyme subunit was CNBr 1, 4,100; CNBr 2, 10,300; CNBr 3, 8,100; CNBr 4, 11,800; CNBr 5, 2,200. The sum of the amino acid residues of the peptides is equal to the sum of the residues in an enzyme subunit, indicating that all of the CNBr peptides have been isolated. The CNBr-resistant methionine was located in CNBr 2 and the 5-fluoro-2'-deoxyuridine 5'-monophosphate binding site in CNBr 4. The holoenzyme molecular weight, based on the residue weights of the amino acids in the two equivalent subunits, is equal to 73,176. The complete sequence of each of the CNBr peptides, except for CNBr 4, which is presented in the following paper, is described.  相似文献   

15.
Han Q  Li J 《FEBS letters》2004,577(3):381-385
Kynurenine aminotransferase (KAT) catalyzes the formation of kynurenic acid (KYNA), the natural antagonist of ionotropic glutamate receptors. This study tests potential substrates and assesses the effects of amino acids and keto acids on the activity of mosquito KAT. Various keto acids, when simultaneously present in the same reaction mixture, display a combined effect on KAT catalyzed KYNA production. Moreover, methionine and glutamine show inhibitory effects on KAT activity, while cysteine functions as either an antagonist or an inhibitor depending on the concentration. Therefore, the overall level of keto acids and cysteine might modulate the KYNA synthesis. Results from this study will be useful in the study of KAT regulation in other animals.  相似文献   

16.
Aims:  Determination of pathways involved in synthesis of volatile sulphur compounds (VSC) from methionine by Oenococcus oeni isolated from wine.
Methods and Results:  Production of VSC by O. oeni from methionine was investigated during bacterial cultures and in assays performed in the presence of resting cells or protein fractions. Cells of O. oeni grown in a medium supplemented with methionine produced methanethiol, dimethyl disulphide, methionol and 3-(methylthio)propionic acid. Methional was also detected, but only transiently during the exponential growth phase. It was converted to methionol and 3-(methylthio) propionic acid in assays. Although this acid could be produced alternatively from 2-oxo-4-(methylthio) butyric acid (KMBA) by oxidative decarboxylation. In addition, KMBA was a precursor for methanethiol and dimethyl disulphide synthesis. Interestingly, assays with resting cells and protein fractions suggested that a specific enzyme could be involved in this conversion in O. oeni .
Conclusion:  This work shows that methional and KMBA are the key intermediates for VSC synthesis from methionine in O. oeni . Putative enzymatic and chemical pathways responsible for the production of these VSC are discussed.
Significance and impact of the study:  This work confirms the capacity of O. oeni to metabolize methionine and describes the involvement of potential enzymatic pathways.  相似文献   

17.
A number of biochemical parameters of glutamine synthetase (EC 6.3.1.2) isolated from the cyanobacterium Anabaena 7120 were determined. Apparent Michaelis constants for glutamate and ATP were found to be 2.1 and 0.32 mM, respectively; that for ammonia was found to be below 20 microM, significantly lower than that reported for glutamine synthetases from other species. Serine, alanine, glycine, cysteine, aspartic acid, methionine sulfone, and methionine sulfoximine were found to inhibit the enzyme. The enzyme is controlled neither by adenylylation nor by feedback inhibition by glutamine, mechanisms found in some other prokaryotes. It must therefore be regulated by a different mechanism, possibly a combination of feedback by alanine, serine, and glycine, metabolites which are especially effective in inhibiting Anabaena glutamine synthetase.  相似文献   

18.
The aminotransferase that catalyzes the formation of δ-aminolevulinic acid from glutamate-1-semialdehyde or from glutamate in a reconstituted enzyme system was isolated and partially purified from Chlorella vulgaris. The apparent molecular weight of the aminotransferase was determined by Sephadex G-100 and Ultrogel AcA 54 gel filtration to be 60,000 ± 5,000. Catalytic activity of the aminotransferase required pyrixodal phosphate (PALP). The cofactor could not be removed by gel filtration after exposure of the enzyme to PALP. Aminotransferase was inhibited by gabaculine (3-amino-2,3-dihydrobenzoic acid). The concentration of gabaculine required for half maximal inhibition was about 0.05 micromolar. Aminotransferase activity could be regained upon the removal of gabaculine by gel filtration and supplementing the assay medium with PALP. Neither the inhibitory action of gabaculine nor its reversibility was affected by preincubation of the enzyme with the keto acids levulinate and δ-aminolevulinic acid.  相似文献   

19.
A clone coding for glutathione S-transferase (GST) CL2 was isolated from a chicken liver cDNA library. This clone (819 bp) encodes a polypeptide comprising 219 amino acids with a molecular weight of 25,717, excluding the initiator methionine. The primary amino acid sequence of the enzyme has 47% identical sequence with other class mu GSTs.  相似文献   

20.
The NAD+-dependent isocitrate dehydrogenase of the organic acid-producing yeast Yarrowia lipolytica was isolated, purified, and partially characterized. The purification procedure included four steps: ammonium sulfate precipitation, acid precipitation, hydrophobic chromatography, and gel-filtration chromatography. The enzyme was purified 129-fold with a yield of 31% and had a specific activity of 22 U/mg protein. The molecular mass of the enzyme was found to be 412 kDa. The enzyme consists of eight identical subunits with a molecular mass of about 52 kDa. The Km for NAD+ is 136 microM, and that for isocitrate is 581 microM. The effect of some intermediates of the citric acid cycle and nucleotides on the enzyme activity was studied. The role of isocitrate dehydrogenase (NAD+) in the overproduction of citric and keto acids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号