首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uridine diphosphate N ‐ acetylglucosamine (UDP‐GlcNAc) 2‐epimerase catalyzes the interconversion of UDP‐GlcNAc to UDP‐N‐acetylmannosamine (UDP‐ManNAc), which is used in the biosynthesis of cell surface polysaccharides in bacteria. Biochemical experiments have demonstrated that mutation of this enzyme causes changes in cell morphology and the thermoresistance of the cell wall. Here, we present the crystal structures of Methanocaldococcus jannaschii UDP‐GlcNAc 2‐epimerase in open and closed conformations. A comparison of these crystal structures shows that upon UDP and UDP‐GlcNAc binding, the enzyme undergoes conformational changes involving a rigid‐body movement of the C‐terminal domain. We also present the crystal structure of Bacillus subtilis UDP‐GlcNAc 2‐epimerase in the closed conformation in the presence of UDP and UDP‐GlcNAc. Although a structural overlay of these two closed‐form structures reveals that the substrate‐binding site is evolutionarily conserved, some areas of the allosteric site are distinct between the archaeal and bacterial UDP‐GlcNAc 2‐epimerases. This is the first report on the crystal structure of archaeal UDP‐GlcNAc 2‐epimerase, and our results clearly demonstrate the changes between the open and closed conformations of this enzyme. Proteins 2014; 82:1519–1526. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g?1 h?1) and ≈31‐time (313 µmol g?1 h?1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced ?OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g?1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced ?CO2 and ?H as active radicals would be dominant to initiate the conversion of CO2 to CH4.  相似文献   

3.
The aim of the present study is to elucidate the signaling pathway involved in death of human neuroblastoma SK‐N‐SH cells induced by Naja naja atra phospholipase A2 (PLA2). Upon exposure to PLA2, p38 MAPK activation, ERK inactivation, ROS generation, increase in intracellular Ca2+ concentration, and upregulation of Fas and FasL were found in SK‐N‐SH cells. SB202190 (p38MAPK inhibitor) suppressed upregulation of Fas and FasL. N‐Acetylcysteine (ROS scavenger) and BAPTA‐AM (Ca2+ chelator) abrogated p38 MAPK activation and upregulation of Fas and FasL expression, but restored phosphorylation of ERK. Activated ERK was found to attenuate p38 MAPK‐mediated upregulation of Fas and FasL. Deprivation of catalytic activity could not diminish PLA2‐induced cell death and Fas/FasL upregulation. Moreover, the cytotoxicity of arachidonic acid and lysophosphatidylcholine was not related to the expression of Fas and FasL. Taken together, our results indicate that PLA2‐induced cell death is, in part, elicited by upregulation of Fas and FasL, which is regulated by Ca2+‐ and ROS‐evoked p38 MAPK activation, and suggest that non‐catalytic PLA2 plays a role for the signaling pathway. J. Cell. Biochem. 106: 93–102, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Perovskite solar cells are one of the most promising photovoltaic technologies, although their molecular level design and stability toward environmental factors remain a challenge. Layered 2D Ruddlesden–Popper perovskite phases feature an organic spacer bilayer that enhances their environmental stability. Here, the concept of supramolecular engineering of 2D perovskite materials is demonstrated in the case of formamidinium (FA) containing A2FAn?1PbnI3n+1 formulations by employing (adamantan‐1‐yl)methanammonium (A) spacers exhibiting propensity for strong Van der Waals interactions complemented by structural adaptability. The molecular design translates into desirable structural features and phases with different compositions and dimensionalities, identified uniquely at the atomic level by solid‐state NMR spectroscopy. For A2FA2Pb3I10, efficiencies exceeding 7% in mesoscopic device architectures without any additional treatment or use of antisolvents for ambient temperature film deposition are achieved. This performance improvement over the state‐of‐the‐art FA‐based 2D perovskites is accompanied by high operational stability under humid ambient conditions, which illustrates the utility of the approach in perovskite solar cells and sets the basis for advanced supramolecular design in the future.  相似文献   

5.
Xueqin Pang  Mingjun Yang  Keli Han 《Proteins》2013,81(8):1399-1410
The A2A adenosine receptor (A2AAR) is a unique G‐protein coupled receptor (GPCR), because besides agonist, its antagonist could also lead to therapeutic relevance. Based on A2AAR‐antagonist crystal structure, we have studied the binding mechanism of two distinct antagonists, ZM241385 and KW6002, and dynamic behaviors of A2AAR induced by antagonist binding. Key residues interacting with both antagonists and residues specifically binding to one of them are identified. ZM241385 specifically bound to S672.65, M1775.38, and N2536.55, while KW6002 binds to F622.60, A813.29, and H2647.29. Moreover, interactions with L1675.28 are found for both antagonists, which were not reported in agonist binding. The dynamic behaviors of antagonist bound holo‐A2AARs were found to be different from the apo‐A2AAR in three typical functional switches, (i) the “ionic lock” was in equilibrium between formation and breakage in apo‐A2AAR, but stayed broken in holo‐A2AARs; (ii) the “rotamer toggle switch,” T883.36/F2426.44/W2466.48, adopted different rotameric conformations in apo‐A2AAR and holo‐A2AARs; (iii) apo‐A2AAR preferred α‐helical intracellular loop (IC)2 and flexible IC3, while holo‐A2AARs had a flexible IC2 and α‐helical IC3. Our results indicated that antagonist binding induced different conformational rearrangements of these characteristic functional switches in apo‐A2AAR and holo‐A2AARs. Proteins 2013; 81:1399–1410. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Objective: There is considerable evidence that cortisol secretion is associated with obesity. The regulation of the 5‐hydroxytryptamine receptor 2A (5‐HT2A) gene might play an essential role because it is involved in the control of cortisol secretion. Therefore, we examined the potential impact of the 5‐HT2A ?1438G/A promoter polymorphism on obesity and estimates of insulin, glucose, and lipid metabolism as well as circulating hormones, including salivary cortisol, in 284 unrelated Swedish men born in 1944. Research Methods and Procedures: The subjects were genotyped by using polymerase chain reaction amplification of the promoter region of the gene for 5‐HT2A followed by digestion of the reaction product with the restriction enzyme MspI. Results: The frequencies were 0.39 for allele ?1438A and 0.61 for allele ?1438G. Homozygotes for the ?1438G allele had, in comparison with ?1438A/A subjects, higher body mass index, waist‐to‐hip ratio, and abdominal sagittal diameter. Moreover, cortisol escape from 0.25‐mg dexamethasone suppression was found in subjects with the ?1438A/G genotype. Serum leptin, fasting insulin, and glucose, as well as serum lipids, were not different across the ?1438G/A genotype groups. Discussion: From these results, we suggest the possibility that an abnormal production rate of the 5‐HT2A gene product might lead to the development of abdominal obesity. The pathophysiology could involve stress factors that destabilize the serotonin‐hypothalamic‐pituitary‐adrenal system in those with genetic vulnerability in the serotonin receptor gene.  相似文献   

7.
Phospholipases A2 (PLA2s) are enzymes responsible for membrane disruption through Ca2+‐dependent hydrolysis of phospholipids. Lys49‐PLA2s are well‐characterized homologue PLA2s that do not show catalytic activity but can exert a pronounced local myotoxic effect. These homologue PLA2s were first believed to present residual catalytic activity but experiments with a recombinant toxin show they are incapable of catalysis. Herein, we present a new homologue Asp49‐PLA2 (BthTX‐II) that is also able to exert muscle damage. This toxin was isolated in 1992 and characterized as presenting very low catalytic activity. Interestingly, this myotoxic homologue Asp49‐PLA2 conserves all the residues responsible for Ca2+ coordination and of the catalytic network, features thought to be fundamental for PLA2 enzymatic activity. Previous crystallographic studies of apo BthTX‐II suggested this toxin could be catalytically inactive since a distortion in the calcium binding loop was observed. In this article, we show BthTX‐II is not catalytic based on an in vitro cell viability assay and time‐lapse experiments on C2C12 myotube cell cultures, X‐ray crystallography and phylogenetic studies. Cell culture experiments show that BthTX‐II is devoid of catalytic activity, as already observed for Lys49‐PLA2s. Crystallographic studies of the complex BthTX‐II/Ca2+ show that the distortion of the calcium binding loop is still present and impairs ion coordination even though Ca2+ are found interacting with other regions of the protein. Phylogenetic studies demonstrate that BthTX‐II is more phylogenetically related to Lys49‐PLA2s than to other Asp49‐PLA2s, thus allowing Crotalinae subfamily PLA2s to be classified into two main branches: a catalytic and a myotoxic one. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
High homocysteine (HCy) levels are associated with lymphocyte‐mediated inflammatory responses that are sometimes in turn related to hypoxia. Because adenosine is a potent lymphocyte suppressor produced in hypoxic conditions and shares metabolic pathways with HCy, we addressed the influence of high HCy levels on the hypoxia‐induced, adenosine‐mediated, alteration of lymphocyte viability. We treated mitogen‐stimulated human lymphocytes isolated from healthy individuals and the human lymphoma T‐cell line CEM with cobalt chloride (CoCl2)to reproduce hypoxia. We found that CoCl2‐altered cell viability was dose‐dependently reversed using HCy. In turn, the HCy effect was inhibited using DL‐propargylglycine, a specific inhibitor of the hydrogen sulphide (H2S)‐synthesizing enzyme cystathionine‐γ‐lyase involved in HCy catabolism. We then addressed the intracellular metabolic pathway of adenosine and HCy, and the role of the adenosine A2A receptor (A2AR). We observed that: (i) hypoxic conditions lowered the intracellular concentration of HCy by increasing adenosine production, which resulted in high A2AR expression and 3′, 5′‐cyclic adenosine monophosphate production; (ii) increasing intracellular HCy concentration reversed the hypoxia‐induced adenosinergic signalling despite high adenosine concentration by promoting both S‐adenosylhomocysteine and H2S production; (iii) DL‐propargylglycine that inhibits H2S production abolished the HCy effect. Together, these data suggest that high HCy levels prevent, via H2S production and the resulting down‐regulation of A2AR expression, the hypoxia‐induced adenosinergic alteration of lymphocyte viability. We point out the relevance of these mechanisms in the pathophysiology of cardiovascular diseases.  相似文献   

9.
Riboswitch regulation of gene expression requires ligand‐mediated RNA folding. From the fluorescence lifetime distribution of bound 2‐aminopurine ligand, we resolve three RNA conformers (Co, Ci, Cc) of the liganded G‐ and A‐sensing riboswitches from Bacillus subtilis. The ligand binding affinities, and sensitivity to Mg2+, together with results from mutagenesis, suggest that Co and Ci are partially unfolded species compromised in key loop‐loop interactions present in the fully folded Cc. These data verify that the ligand‐bound riboswitches may dynamically fold and unfold in solution, and reveal differences in the distribution of folded states between two structurally homologous purine riboswitches: Ligand‐mediated folding of the G‐sensing riboswitch is more effective, less dependent on Mg2+, and less debilitated by mutation, than the A‐sensing riboswitch, which remains more unfolded in its liganded state. We propose that these sequence‐dependent RNA dynamics, which adjust the balance of ligand‐mediated folding and unfolding, enable different degrees of kinetic discrimination in ligand binding, and fine‐tuning of gene regulatory mechanisms. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 953–965, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
Using a functional genomics approach, four candidate genes (PtGT34A, PtGT34B, PtGT34C and PtGT34D) were identified in Pinus taeda. These genes encode CAZy family GT34 glycosyltransferases that are involved in the synthesis of cell‐wall xyloglucans and heteromannans. The full‐length coding sequences of three orthologs (PrGT34A, B and C) were isolated from a xylem‐specific cDNA library from the closely related Pinus radiata. PrGT34B is the ortholog of XXT1 and XXT2, the two main xyloglucan (1→6)‐α‐xylosyltransferases in Arabidopsis thaliana. PrGT34C is the ortholog of XXT5 in A. thaliana, which is also involved in the xylosylation of xyloglucans. PrGT34A is an ortholog of a galactosyltransferase from fenugreek (Trigonella foenum‐graecum) that is involved in galactomannan synthesis. Truncated coding sequences of the genes were cloned into plasmid vectors and expressed in a Sf9 insect cell‐culture system. The heterologous proteins were purified, and in vitro assays showed that, when incubated with UDP‐xylose and cellotetraose, cellopentaose or cellohexaose, PrGT34B showed xylosyltransferase activity, and, when incubated with UDP‐galactose and the same cello‐oligosaccharides, PrGT34B showed some galactosyltransferase activity. The ratio of xylosyltransferase to galactosyltransferase activity was 434:1. Hydrolysis of the galactosyltransferase reaction products using galactosidases showed the linkages formed were α‐linkages. Analysis of the products of PrGT34B by MALDI‐TOF MS showed that up to three xylosyl residues were transferred from UDP‐xylose to cellohexaose. The heterologous proteins PrGT34A and PrGT34C showed no detectable enzymatic activity.  相似文献   

11.
The long‐term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N‐acetylglucosaminidase (NAG) after 10 years of exposure to 1.5 times ambient levels of CO2 and O3 in aspen and aspen–birch forest ecosystems, and compare these results to earlier studies in the same long‐term experiment. The forest floor community was dominated by saprotrophic fungi, and differed slightly between plant community types, as did NAG activity. Elevated CO2 and O3 had small but significant effects on the distribution of fungal genotypes in this horizon, and elevated CO2 also lead to an increase in the proportion of Sistotrema spp. within the community. Yet, although cellobiohydrolase activity was lower in the forest floor under elevated O3, it was not affected by elevated CO2. NAG was also unaffected. The soil community was dominated by ectomycorrhizal species. Both CO2 and O3 had a minor effect on the distribution of genotypes; however, phylogenetic analysis indicated that under elevated O3Cortinarius and Inocybe spp. increased in abundance and Laccaria and Tomentella spp. declined. Although cellobiohydrolase activity in soil was unaffected by either CO2 or O3, NAG was higher (~29%) under CO2 in aspen–birch, but lower (~18%) under aspen. Time series analysis indicated that CO2 increased cellulolytic enzyme activity during the first 5 years of the experiment, but that the magnitude of this effect diminished over time. NAG activity also showed strong early stimulation by elevated CO2, but after 10 years this effect is no longer evident. Elevated O3 appears to have variable stimulatory and repressive effects depending on the soil horizon and time point examined.  相似文献   

12.
1. Uridine triphosphate (UTP), uridine diphosphate (UDP), cytidine triphosphate (CTP), and deoxythymidine triphosphate (TTP) caused concentration-dependent increases in the release of thromboxane A2 (TXA2) from cultured glia prepared from the newborn rat cerebral cortex. Although each of the pyrimidine nucleotides displayed similar potencies, CTP and TTP were considerably less effective than either UTP or UDP. The purine nucleotide ATP was equally as potent as the pyrimidine nucleotides but was marginally less effective than either UTP or UDP.2. The ability of UTP, UDP, TTP, and CTP to promote TXA2 release from cultured glia was inhibited in a concentration-dependent manner by suramin and was markedly reduced when incubations were performed either in Ca2+-free medium or on cultures which had been maintained in serum-free growth medium for 4 days prior to experimentation.3. Challenges with UTP and UDP in combination were found to elicit a response which was no different from the effects of these nucleotides alone; in addition, their effects were reversed by the phospholipase A2 inhibitor ONO-RS-082. A slight reduction in UTP-and UDP-stimulated TXA2 release was observed in cultures grown in the presence of leucine methyl ester, a treatment reported to limit microglial survival.4. These results suggest that glia are targets for extracellular pyrimidine nucleotides and that their ability to release eicosanoids from these cells may be important in the brain's response to damage.  相似文献   

13.
Eukaryotic DNA replication is performed by high‐fidelity multi‐subunit replicative B‐family DNA polymerases (Pols) α, δ and ?. Those complexes are composed of catalytic and accessory subunits and organized in multicomplex machinery: the replisome. The fourth B‐family member, DNA polymerase zeta (Pol ζ), is responsible for a large portion of mutagenesis in eukaryotic cells. Two forms of Pol ζ have been identified, a hetero‐dimeric (Pol ζ2) and a hetero‐tetrameric (Pol ζ4) ones and recent data have demonstrated that Pol ζ4 is responsible for damage‐induced mutagenesis. Here, using yeast Pol ζ mutant defective in the assembly of the Pol ζ four‐subunit form, we show in vivo that [4Fe‐4S] cluster in Pol ζ catalytic subunit (Rev3p) is also required for spontaneous (wild‐type cells) and defective‐replisome‐induced mutagenesis – DRIM (pol3‐Y708A, pol2‐1 or psf1‐100 cells), when cells are not treated with any external damaging agents.  相似文献   

14.
15.
Abstract An entomopathogenic bacterium, Xenorhabdus nematophila, has been known to induce significant immunosuppression of target insects by inhibiting immune‐associated phospholipase A2 (PLA2), which subsequently shuts down biosynthesis of eicosanoids that are critical in immune mediation in insects. Some metabolites originated from the bacterial culture broth have been identified and include benzylideneacetone, proline‐tyrosine and acetylated phenylalanine‐glycine‐valine, which are known to inhibit enzyme activity of PLA2 extracted from hemocyte and fat body. This study tested their effects on digestive PLA2 of the beet armyworm, Spodoptera exigua. Young larvae fed different concentrations of the three metabolites resulted in significant adverse effects on larval development even at doses below 100 μg/mL. In particular, they induced significant reduction in digestive efficiency of ingested food. All three metabolites significantly inhibited catalytic activity of digestive PLA2 extracted from midgut lumen of the fifth instar larvae at a low micromolar range. These results suggest that the inhibitory activities of the three bacterial metabolites on digestive PLA2 of S. exigua midgut may explain some of their oral toxic effects.  相似文献   

16.
Maize plant height is closely associated with biomass, lodging resistance and grain yield. Determining the genetic basis of plant height by characterizing and cloning plant height genes will guide the genetic improvement of crops. In this study, a quantitative trait locus (QTL) for plant height, qPH3.1, was identified on chromosome 3 using populations derived from a cross between Zong3 and its chromosome segment substitution line, SL15. The plant height of the two lines was obviously different, and application of exogenous gibberellin A3 removed this difference. QTL mapping placed qPH3.1 within a 4.0 cM interval, explaining 32.3% of the phenotypic variance. Furthermore, eight homozygous segmental isolines (SILs) developed from two larger F2 populations further narrowed down qPH3.1 to within a 12.6 kb interval. ZmGA3ox2, an ortholog of OsGA3ox2, which encodes a GA3 βhydroxylase, was positionally cloned. Association mapping identified two polymorphisms in ZmGA3ox2 that were significantly associated with plant height across two experiments. Quantitative RTPCR showed that SL15 had higher ZmGA3ox2 expression relative to Zong3. The resultant higher GA1 accumulation led to longer internodes in SL15 because of increased cell lengths. Moreover, a large deletion in the coding region of ZmGA3ox2 is responsible for the dwarf mutant d1‐6016. The successfully isolated qPH3.1 enriches our knowledge on the genetic basis of plant height in maize, and provides an opportunity for improvement of plant architecture in maize breeding.  相似文献   

17.
Chitinases hydrolyze chitin, an insoluble linear polymer of N-acetyl-d-glucosamine (NAG)n, into nutrient sources. Bacillus cereus NCTU2 chitinase (ChiNCTU2) predominantly produces chitobioses and belongs to glycoside hydrolase family 18. The crystal structure of wild-type ChiNCTU2 comprises only a catalytic domain, unlike other chitinases that are equipped with additional chitin binding and insertion domains to bind substrates into the active site. Lacking chitin binding and chitin insertion domains, ChiNCTU2 utilizes two dynamic loops (Gly-67—Thr-69 and Ile-106–Val-112) to interact with (NAG)n, generating novel substrate binding and distortion for catalysis. Gln-109 is crucial for direct binding with substrates, leading to conformational changes of two loops with a maximum shift of ∼4.6 Å along the binding cleft. The structures of E145Q, E145Q/Y227F, and E145G/Y227F mutants complexed with (NAG)n reveal (NAG)2, (NAG)2, and (NAG)4 in the active site, respectively, implying various stages of reaction: before hydrolysis, E145G/Y227F with (NAG)4; in an intermediate state, E145Q/Y227F with a boat-form NAG at the −1 subsite, −1-(NAG); after hydrolysis, E145Q with a chair form −1-(NAG). Several residues were confirmed to play catalytic roles: Glu-145 in cleavage of the glycosidic bond between −1-(NAG) and +1-(NAG); Tyr-227 in the conformational change of −1-(NAG); Asp-143 and Gln-225 in stabilizing the conformation of −1-(NAG). Additionally, Glu-190 acts in the process of product release, and Tyr-193 coordinates with water for catalysis. Residues Asp-143, E145Q, Glu-190, and Tyr-193 exhibit multiple conformations for functions. The inhibitors zinc ions and cyclo-(l-His-l-Pro) are located at various positions and confirm the catalytic-site topology. Together with kinetics analyses of related mutants, the structures of ChiNCTU2 and its mutant complexes with (NAG)n provide new insights into its substrate binding and the mechanistic action.  相似文献   

18.
A novel ligand‐binding site with functional implications has been identified in phospholipase A2 (PLA2). The binding of non‐steroidal anti‐inflammatory agent indomethacin at this site blocks both catalytic and anti‐coagulant actions of PLA2. A group IIA PLA2 has been isolated from Daboia russelli pulchella (Russell's viper) which is enzymatically active as well as induces a strong anti‐coagulant action. The binding studies have shown that indomethacin reduces the effects of both anti‐coagulant and pro‐inflammatory actions of PLA2. A group IIA PLA2 was co‐crystallized with indomethacin and the structure of the complex has been determined at 1.4 Å resolution. The structure determination has revealed the presence of an indomethacin molecule in the structure of PLA2 at a site which is distinct from the conventional substrate‐binding site. One of the carboxylic group oxygen atoms of indomethacin interacts with Asp 49 and His 48 through the catalytically important water molecule OW 18 while the second carboxylic oxygen atom forms an ionic interaction with the side chain of Lys 69. It is well known that the residues, His 48 and Asp 49 are essential for catalysis while Lys 69 is a part of the anti‐coagulant loop (residues, 54–77). Indomethacin binds in such a manner that it blocks the access to both, it works as a dual inhibitor for catalytic and anti‐coagulant actions of PLA2. This new binding site in PLA2 has been observed for the first time and indomethacin is the first compound that has been shown to bind at this novel site resulting in the prevention of anti‐coagulation and inflammation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Recently, we identified a novel disulfide oxidoreductase, SdbA, in the oral bacterium Streptococcus gordonii. Disulfide oxidoreductases form disulfide bonds in nascent proteins using a CXXC catalytic motif. Typically, the N‐terminal cysteine interacts with substrates, whereas the C‐terminal cysteine is buried and only reacts with the first cysteine of the motif. In this study, we investigated the SdbA C86P87D88C89 catalytic motif. In vitro, SdbA single cysteine variants at the N or C‐terminal position (SdbAC86P and SdbAC89A) were active but displayed different susceptibility to oxidation, and N‐terminal cysteine was prone to sulfenylation. In S. gordonii, mutants with a single N‐terminal cysteine were inactive and formed unstable disulfide adducts with other proteins. Activity was partially restored by inactivation of pyruvate oxidase, a hydrogen peroxide generator. Presence of the C‐terminal cysteine alone (in the SdbAC86P variant) could complement the ΔsdbA mutant and restore disulfide bond formation in recombinant and natural protein substrates. These results provide evidence that certain disulfide oxidoreductases can catalyze disulfide bond formation using a single cysteine of the CXXC motif, including the buried C‐terminal cysteine.  相似文献   

20.
vanGCd, a cryptic gene cluster highly homologous to the vanG gene cluster of Enterococcus faecalis is largely spread in Clostridium difficile. Since emergence of vancomycin resistance would have dramatic clinical consequences, we have evaluated the capacity of the vanGCd cluster to confer resistance. We showed that expression of vanGCd is inducible by vancomycin and that VanGCd, VanXYCd and VanTCd are functional, exhibiting D‐Ala : D‐Ser ligase, D,D‐dipeptidase and D‐Ser racemase activities respectively. In other bacteria, these enzymes are sufficient to promote vancomycin resistance. Trans‐complementation of C. difficile with the vanC resistance operon of Enterococcus gallinarum faintly impacted the MIC of vancomycin, but did not promote vancomycin resistance in C. difficile. Sublethal concentration of vancomycin led to production of UDP‐MurNAc‐pentapeptide[D‐Ser], suggesting that the vanGCd gene cluster is able to modify the peptidoglycan precursors. Our results indicated amidation of UDP‐MurNAc‐tetrapeptide, UDP‐MurNAc‐pentapeptide[D‐Ala] and UDP‐MurNAc‐pentapeptide[D‐Ser]. This modification is passed on the mature peptidoglycan where a muropeptide Tetra‐Tetra is amidated on the meso‐diaminopimelic acid. Taken together, our results suggest that the vanGCd gene cluster is functional and is prevented from promoting vancomycin resistance in C. difficile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号