首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peter Schopfer 《Planta》1971,99(4):339-346
Summary Improved techniques in localization of phenylalanine ammonia-lyase (PAL) on polyacrylamide disk electrophoresis columns indicate that the enzyme synthesized under the control of phytochrome is electrophoretically indistinguishable from the enzyme present in dark grown mustard seedlings. Furthermore, no heterogeneity of PAL with respect to molecular size has been detected. However, the formation of high molecular weight aggregates with PAL activity in tris buffer of low concentration has been demonstrated. The data lead to the conclusion that phytochrome does not induce the synthesis of a novel PAL enzyme differing in its structural properties from the PAL in dark grown seedlings. The observations of other investigators on separable forms of PAL are critically discussed.  相似文献   

2.
Metabolic channeling has been proposed to occur at the entry point into plant phenylpropanoid biosynthesis. To determine whether isoforms of L-Phe ammonia-lyase (PAL), the first enzyme in the pathway, can associate with the next enzyme, the endomembrane-bound cinnamate 4-hydroxylase (C4H), to facilitate channeling, we generated transgenic tobacco (Nicotiana tabacum) plants independently expressing epitope-tagged versions of two PAL isoforms (PAL1 and PAL2) and C4H. Subcellular fractionation and protein gel blot analysis using epitope- and PAL isoform-specific antibodies indicated both microsomal and cytosolic locations of PAL1 but only cytosolic localization of PAL2. However, both PAL isoforms were microsomally localized in plants overexpressing C4H. These results, which suggest that C4H itself may organize the complex for membrane association of PAL, were confirmed using PAL-green fluorescent protein (GFP) fusions with localization by confocal microscopy. Coexpression of unlabeled PAL1 with PAL2-GFP resulted in a shift of fluorescence localization from endomembranes to cytosol in C4H overexpressing plants, whereas coexpression of unlabeled PAL2 with PAL1-GFP did not affect PAL1-GFP localization, indicating that PAL1 has a higher affinity for its membrane localization site than does PAL2. Dual-labeling immunofluorescence and fluorescence energy resonance transfer (FRET) studies confirmed colocalization of PAL and C4H. However, FRET analysis with acceptor photobleaching suggested that the colocalization was not tight.  相似文献   

3.
Abstract

Phenylalanine ammonia lyase (PAL) catalyzes the nonoxidative deamination of l-phenylalanine to form trans-cinnamic acid and a free ammonium ion. It plays a major role in the catabolism of l-phenylalanine. The presence of PAL has been reported in diverse plants, some fungi, Streptomyces and few Cyanobacteria. In the past two decades, PAL has gained considerable significance in several clinical, industrial and biotechnological applications. Since its discovery, much knowledge has been gathered with reference to the enzyme’s importance in phenyl propanoid pathway of plants. In contrast, there is little knowledge about microbial PAL. Furthermore, the commercial source of the enzyme has been mainly obtained from the fungi. This study focuses on the recent advances on the physiological role of microbial PAL and the improvements of PAL biotechnological production both from our laboratory and many others as well as the latest advances on the new applications of microbial PAL.  相似文献   

4.
Phenylalanine ammonia-lyase (PAL) from sunflower hypocotyls has been partially purified by selective precipitation with ammonium sulfate and molecular gel filtration on Sephacryl S-300. Kinetic assays carried out with this partially purified PAL preparation revealed that the enzyme did not show a homogeneous kinetic behaviour. The observed kinetic pattern and parameters (Km and Vmax) depended on the assay conditions used and the protein concentration added to the assay mixture. PAL displayed Michaelian or negative cooperativity kinetics. Such behaviour can be explained by the existence of an association-dissociation process of PAL-protein subunits. The presence of mono-, tri- and tetrameric forms of PAL has been assessed by molecular gel filtration on Sephacryl S-200, using different elution conditions.  相似文献   

5.
A modern view of phenylalanine ammonia lyase.   总被引:6,自引:0,他引:6  
Phenylalanine ammonia lyase (PAL; E.C.4.3.1.5), which catalyses the biotransformation of L-phenylalanine to trans-cinnamic acid and ammonia, was first described in 1961 by Koukol and Conn. Since its discovery, much knowledge has been gathered with reference to the enzyme's catabolic role in microorganisms and its importance in the phenyl propanoid pathway of plants. The 3-dimensional structure of the enzyme has been characterized using X-ray crystallography. This has led to a greater understanding of the mechanism of PAL-catalyzed reactions, including the discovery of a recently described cofactor, 3,5-dihydro-5-methyldiene-4H-imidazol-4-one. In the past 3 decades, PAL has gained considerable significance in several clinical, industrial, and biotechnological applications. The reversal of the normal physiological reaction can be effectively employed in the production of optically pure L-phenylalanine, which is a precursor of the noncalorific sweetener aspartame (L-phenylalanyl-L-aspartyl methyl ester). The enzyme's natural ability to break down L-phenylalanine makes PAL a reliable treatment for the genetic condition phenylketonuria. In this mini-review, we discuss prominent details relating to the physiological role of PAL, the mechanism of catalysis, methods of determination and purification, enzyme kinetics, and enzyme activity in nonaqueous media. Two topics of current study on PAL, molecular biology and crystal structure, are also discussed.  相似文献   

6.
Phenylketonuria (PKU) is an inherited metabolic disorder caused by deficient phenylalanine hydroxylase (PAH) activity, the enzyme responsible for the disposal of excess amounts of the essential amino acid phenylalanine (Phe). Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) has potential to serve as an enzyme substitution therapy for this human genetic disease. Using 7-day-old Japanese Striped corn seedlings (Japonica Striped maize, Zea mays L. cv. japonica) that contain high activities of PAL, we investigated a number of methods to preserve the roots as an intact food and for long-term storage. The cryoprotectant effects of maple syrup and other edible sugars (mono- and oligosaccharides) were evaluated. Following thawing, the preserved roots were then examined to determine whether the rigid plant cell walls could protect the PAL enzyme from proteolysis during simulated (in vitro) digestion comprised of gastric and intestinal phases. While several treatments led to retention of PAL activity during freezing, upon thawing and in vitro digestion, root tissues that had been previously frozen in the presence of maple syrup exhibited the highest residual PAL activities (∼50% of the initial enzyme activity), in marked contrast to all of the treatments using other edible sugars. The structural integrity of the root cells, and the stability of the functional PAL tetramer were also preserved with the maple syrup protocol. These results have significance for the formulation of oral enzyme/protein therapeutics. When plant tissues are adequately preserved, the rigid cell walls constitute a protective barrier even under harsh (e.g. gastrointestinal-like) conditions.  相似文献   

7.
The production of alpha-amidated peptides from their glycine-extended precursors is a two-step process involving the sequential action of two catalytic domains encoded by the bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) precursor. The NH2-terminal third of the PAM precursor contains the first enzyme, peptidylglycine alpha-hydroxylating monooxygenase (PHM), a copper, molecular oxygen, and ascorbate-dependent enzyme. The middle third of the PAM precursor contains the second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL). The COOH-terminal third of the PAM precursor encodes a transmembrane domain and a hydrophilic domain that may form a cytoplasmic tail. Antisera to a peptide within the PAL domain were used to identify a 50-kDa protein as the major form of PAL in bovine neurointermediate pituitary granules. This 50-kDa PAL protein was purified and found to begin at Asp434 of bPAM, indicating that it could arise through endoproteolytic cleavage of the bPAM precursor at Lys432-Lys433. With alpha-N-acetyl-Tyr-Val-alpha-hydroxyglycine as the substrate, PAL exhibits a pH optimum of 5.0; enzymatic activity is inhibited by high concentrations of salt but is relatively resistant to thiol reagents and urea. PAL activity is inhibited by EDTA and restored by a number of divalent metals, including Cd2+, Cu2+, Zn2+, and Ca2+. Kinetic studies using alpha-N-acetyl-Tyr-Val-alpha-hydroxyglycine indicate that PAL has a Km of 38 microM and a turnover number of 220/s. Expression vectors encoding only the soluble PHM domain or the PAM precursor from which the PHM domain had been deleted were constructed. hEK293 cells transfected with the PHM vector exhibited a 10-fold increase in secretion of PHM activity with no PHM activity detectable in control or transfected cells. hEK293 cells transfected with the PAL vector exhibited a 2-fold increase in secretion of PAL activity and a 15-fold increase in cellular PAL activity. Most of the PAL activity produced by the transfected cells remained membrane-associated.  相似文献   

8.
Current Microbiology - We have prepared an antiserum against a new lytic enzyme (PAL) that has recently been isolated and purified from a mutant ofStreptococcus pneumoniae infected with the...  相似文献   

9.
苯丙氨酸解氨酶   总被引:7,自引:0,他引:7  
苯丙氨酸解氨酶由四个亚基组成,含两个脱氢丙氨酸残基。植物酶具有内在不稳性,由多种同工酶组成。酶催化过程中发生构象变化,底物经过负碳离子中间体完成反应。该酶并非是二单体负协同变构酶。一级结构表明,酶以无规则卷曲结构为主。酵母基因约2.7kb,有六个内含子,编码75kD_a肽。植物酶由多基因编码,有一个内含子,编码78kD_a肽。启动子部位有两个富含A、C碱基的序列,为胁迫作用基因活化因子结合部位。  相似文献   

10.
A factor capable of the reversible inactivation of PAL in vitro has been demonstrated in extracts of gherkin hypocotyls. Kinetics of the interaction between enzyme and inactivator indicate that PAL and the factor form a freely reversible complex. The properties of the inactivator are discussed in relation to its proposed role in the regulation of PAL activity in dark- and light-grown tissue.  相似文献   

11.
12.
Cheng SH  Sheen J  Gerrish C  Bolwell GP 《FEBS letters》2001,503(2-3):185-188
Phenylalanine ammonia-lyase (PAL) is a key enzyme in pathogen defence, stress response and secondary metabolism and is subject to post-translational phosphorylation. In order to address the significance of this phenomenon it is necessary to identify the protein kinase (PK) responsible and place it in its regulatory circuit. Using protoplast transient expression of Arabidopsis kinase genes coupled to immunocomplex kinase assay, it has been possible to screen for specific PAL kinase. We show here that AtCPK1 (calcium dependent PK), but not other closely related PKs could phosphorylate both a recombinant PAL protein and a peptide (SRVAKTRTLTTA) that is a site phosphorylated in vivo. Identification of the specific CDPK as a PAL kinase now opens up the possibility of exploring the calcium link in biotic stress signalling, salicylate and phytoalexin production as well as the significance of PAL phosphorylation. The protoplast transient expression system is a potentially powerful method to determine and screen for plant gene functions utilising genomic and proteomic data.  相似文献   

13.
14.
A large number of studies have estimated phenylalanine ammonia-lyase (PAL) activity because it strongly reacts to various stimuli. Activity of this enzyme has been assayed mainly by means of spectrophotometry, but the precision of this method is poorly known. We compared assays of PAL activity using spectrophotometry and high performance liquid chromatography (HPLC) in two species (Matricaria chamomilla and Arabidopsis thaliana). Additionally, copper-exposed M. chamomilla plants and buffer with additive were also tested. Our data indicate that spectrophotometry both overestimates (leaves of M. chamomilla) and underestimates (leaves and roots of A. thaliana) PAL activity in comparison with HPLC, suggesting interference of UV-absorbing metabolites. HPLC also showed more accurate detection of cinnamic acid in Cu-exposed chamomile roots. Addition of dithiothreitol to the extraction buffer enhanced PAL activity but reduced proteins, indicating an artificial negative effect. A comparison of PAL activity in selected species is also provided.  相似文献   

15.
A comparative study has been made of phenylalanine ammonia lyase (PAL) activity in plants sensitive or resistant to various herbicides (piclorame, methylchloro-phenoxyacetic acid (MCPA), atrazine). Piclorame, a herbicide with hormonal activity caused a large decrease in PAL activity of sensitive plants (Nicotiana tabacum), even at low concentrations (5 × 10-9M) whilst in resistant plants (Triticum aestivum) its effect is negligible; MCPA, also a herbicide with hormonal activity, similarly affects the activity of PAL, but only at higher concentrations. On the contrary, the action of atrazine, which has no hormonal activity, is lower and weaker, probably being only a secondary effect. Determinations of PAL activity during the photoperiod following piclorame application indicate that this herbicide influences principally the photodependent enzyme activity.  相似文献   

16.
Pharmacological evidence implicates trans-cinnamic acid as a feedback modulator of the expression and enzymatic activity of the first enzyme in the phenylpropanoid pathway, L-phenylalanine ammonia-lyase (PAL). To test this hypothesis independently of methods that utilize potentially non-specific inhibitors, we generated transgenic tobacco lines with altered activity levels of the second enzyme of the pathway, cinnamic acid 4-hydroxylase (C4H), by sense or antisense expression of an alfalfa C4H cDNA. PAL activity and levels of phenylpropanoid compounds were reduced in leaves and stems of plants in which C4H activity had been genetically down-regulated. However, C4H activity was not reduced in plants in which PAL activity had been down-regulated by gene silencing. In crosses between a tobacco line over-expressing PAL from a bean PAL transgene and a C4H antisense line, progeny populations harboring both the bean PAL sense and C4H antisense transgenes had significantly lower extractable PAL activity than progeny populations harboring the PAL transgene alone. Our data provide genetic evidence for a feedback loop at the entry point into the phenylpropanoid pathway that had previously been inferred from potentially artifactual pharmacological experiments.  相似文献   

17.
18.
《Phytochemistry》1987,26(10):2723-2727
l-Phenylalanine ammonia-lyase (PAL, E.C. 4.3.1.5) is the first committed enzyme in the pathway leading to phenylpropanoid biosynthesis in higher plants. PAL catalyses the conversion of l-phenylalanine to t-cinnamic acid with the elimination of ammonia. Standard methods for determination of PAL activity in both green and non-green tissues were found to lead to measurements of both l-phenylalanine amino-transferase (PAT, E.C. 2.6.1.1) and PAL activities together. The accurate estimation of PAL activity alone, necessitated the inhibition of PAT by a specific inhibitor of PAT activity, l-aspartic acid. The influence of PAT on the kinetics of PAL activity may explain (i) the diverse properties that have been attributed to PAL and (ii) the controversies regarding the control mechanism underlying the regulation of PAL activity. Evidence is presented for the regulation of phenylpropanoid biosynthesis via substrate supply and availability as opposed to feedback inhibition, during phaseollin production and hypersensitive necrosis in Phaseolus vulgaris.  相似文献   

19.
The direct one-step synthesis of L-phenylalanine methyl ester in an organic-aqueous biphasic system using phenylalanine ammonia lyase (E.C.4.3.1.5, PAL) containing Rhodotorula glutinis yeast whole cells was reported earlier. We report here further optimization of this biotransformation using isolated PAL, when the lyophilized enzyme is treated with different water miscible and water immiscible organic solvents. Use of isolated PAL enzyme is advantageous in overcoming diffusion barriers encountered when using PAL containing R.glutinis whole cells, and resulted in increased product yield due to better interaction of enzyme with the substrate. Among the water miscible solvents, ethanol treated and methanol-treated enzymes supported maximum PAL forward and reverse activities; respectively. In the water immiscible solvents category, heptane-treated enzyme exhibited maximal activity for both PAL forward and reverse reactions. PAL activity obtained with enzyme specimens treated with methanol, ethanol, and heptane varied in the range of 91–99% of that observed in aqueous buffer medium for the forward reaction; and 89–95% for the reverse reaction. n-butanol,acetone, and benzene were found to have a inhibitory effect on PAL enzyme, in that, it resulted in only 31–33% activity of that obtained with aqueous solution. Raman spectroscopy was used to monitor amide I and II bands which are sensitive to changes in the secondary structure of proteins. No changes in structure could be detected from the analyses of AI and AII bands of PAL spectra. This data obtained for PAL, a tetramer, could be significant in predicting how solvent interactions affect the structure and function of multimeric proteins and enzymes in nonaqueous media.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号