首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, there has been an increasing amount of literature published on the effects of 4-phenylbutyric acid (4-PBA) in various biological systems. 4-PBA is currently used clinically to treat urea cycle disorders under the trade name Buphenyl. Recent studies however have explored 4-PBA in the context of a low weight molecular weight chemical chaperone. Its properties as a chemical chaperone prevent misfolded protein aggregation and alleviate endoplasmic reticulum (ER) stress. As the ER is responsible for folding proteins targeted for use in membranes or secreted out of the cell, failure of maintaining adequate ER homeostasis may lead to protein misfolding and subsequent cell and organ pathology. Accumulation of misfolded proteins within the ER activates the unfolded protein response (UPR), a molecular repair response. The activation of the UPR aims to restore ER and cellular proteostasis by regulating the rate of synthesis of newly formed proteins as well as initiating molecular programs aimed to help fold or degrade misfolded proteins. If proteostasis is not restored, the UPR may initiate pro-apoptotic pathways. It is suggested that 4-PBA may help fold proteins in the ER, attenuating the activation of the UPR, and thus potentially alleviating various pathologies. This review discusses the biomedical research exploring the potential therapeutic effects of 4-PBA in various in vitro and in vivo model systems and clinical trials, while also commenting on the possible mechanisms of action.  相似文献   

2.
A functional unfolded protein response (UPR) is essential for endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded secretory proteins, reflecting the fact that some level of UPR activation must exist under normal physiological conditions. A coordinator of the UPR and ERAD processes has long been sought. We previously showed that the PKR-like, ER-localized eukaryotic translation initiation factor 2α kinase branch of the UPR is required for the recruitment of misfolded proteins and the ubiquitin ligase HRD1 to the ER-derived quality control compartment (ERQC), a staging ground for ERAD. Here we show that homocysteine-induced ER protein (Herp), a protein highly upregulated by this UPR branch, is responsible for this compartmentalization. Herp localizes to the ERQC, and our results suggest that it recruits HRD1, which targets to ERAD the substrate presented by the OS-9 lectin at the ERQC. Predicted overall structural similarity of Herp to the ubiquitin-proteasome shuttle hHR23, but including a transmembrane hairpin, suggests that Herp may function as a hub for membrane association of ERAD machinery components, a key organizer of the ERAD complex.  相似文献   

3.
Walker AK  Atkin JD 《IUBMB life》2011,63(9):754-763
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the misfolding and aggregation of distinct proteins in affected tissues, however, the pathogenic cause of disease remains unknown. Recent evidence indicates that endoplasmic reticulum (ER) stress plays a central role in ALS pathogenesis. ER stress activates the unfolded protein response (UPR), a homeostatic response to misfolded proteins. The UPR is initially protective by up-regulation of specific ER stress-regulated genes and inhibition of general protein translation. However, long-term ER stress leads to cell death via apoptotic signaling, thus providing a link to neurodegeneration. Activation of the UPR is one of the earliest events in affected motor neurons of transgenic rodent models expressing ALS-linked mutant superoxide dismutase 1 (SOD1). Recently, genetic manipulation of ER stress in several different SOD1 mouse models was shown to alter disease onset and progression, implicating an active role for the UPR in disease mechanisms. Furthermore, mutations to vesicle-associated membrane protein-associated protein B (VAPB), an ER transmembrane protein involved in ER stress regulation, also cause some cases of familial ALS. ER stress also occurs in spinal cord tissues of human sporadic ALS patients, and recent evidence suggests that perturbation of the ER could occur in ALS cases associated with TAR DNA binding protein 43 (TDP-43), fused in sarcoma (FUS) and valosin containing protein (VCP). Together these findings implicate ER stress as a potential upstream mechanism involved in both familial and sporadic forms of ALS.  相似文献   

4.
The accumulation of intracellular protein deposits as inclusion bodies is the common pathological hallmark of most age-related neurodegenerative disorders including polyglutamine diseases. Appearance of aggregates of the misfolded mutant disease proteins suggest that cells are unable to efficiently degrade them, and failure of clearance leads to the severe disturbances of the cellular quality control system. Recently, the quality control ubiquitin ligase CHIP has been shown to suppress the polyglutamine protein aggregation and toxicity. Here we have identified another ubiquitin ligase, called E6-AP, which is able to promote the proteasomal degradation of misfolded polyglutamine proteins and suppress the polyglutamine protein aggregation and polyglutamine protein-induced cell death. E6-AP interacts with the soluble misfolded polyglutamine protein and associates with their aggregates in both cellular and transgenic mouse models. Partial knockdown of E6-AP enhances the rate of aggregate formation and cell death mediated by the polyglutamine protein. Finally, we have demonstrated the up-regulation of E6-AP in the expanded polyglutamine protein-expressing cells as well as cells exposed to proteasomal stress. These findings suggest that E6-AP is a critical mediator of the neuronal response to misfolded polyglutamine proteins and represents a potential therapeutic target in the polyglutamine diseases.  相似文献   

5.
Activation of the unfolded protein response in Parkinson's disease   总被引:7,自引:0,他引:7  
Parkinson's disease (PD) is, at the neuropathological level, characterized by the accumulation of misfolded proteins. The presence of misfolded proteins can trigger a cellular stress response in the endoplasmic reticulum (ER) called the Unfolded Protein Response (UPR). The UPR has been shown to be involved in cellular models for PD. In this study, we investigated UPR activation in the substantia nigra of control and PD patients. Immunoreactivity for the UPR activation markers phosphorylated pancreatic ER kinase (pPERK) and phosphorylated eukaryotic initiation factor 2alpha (peIF2alpha) is detected in neuromelanin containing dopaminergic neurons in the substantia nigra of PD cases but not in control cases. In addition, pPERK immunoreactivity is colocalized with increased alpha-synuclein immunoreactivity in dopaminergic neurons. These data show that the UPR is activated in PD and that UPR activation is closely associated with the accumulation and aggregation of alpha-synuclein.  相似文献   

6.
7.
内质网应激偶联炎症反应与慢性病发病机制   总被引:1,自引:0,他引:1  
Yan J  Hu ZW 《生理科学进展》2010,41(4):261-266
内质网是合成细胞内分泌蛋白和膜蛋白并进行蛋白折叠的主要细胞器。新近研究证明,当内质网蛋白质合成与折叠的负担增加、非折叠或错误折叠蛋白质堆积,可激活内质网的几组特定信号转导通路,将这些应激信号传递到细胞浆和细胞核,引起未/错误折叠蛋白反应。这对维持细胞动态平衡和生物体的发育具有重要意义。更为重要的是,未/错误折叠蛋白反应能够与细胞内炎症反应信号转导通路偶联,是非感染性致病原引发炎症反应的主要原因。因此,内质网应激-未/错误折叠蛋白反应-炎症反应在特定的细胞发生偶联是许多炎症疾病的发病机制。本文综述该领域的研究进展,并介绍了内质网应激信号和炎症反应偶联参与一些慢性病发病的分子细胞机制。这些研究不仅加深人们对这些慢性病发病机制的了解,也有助于对调节内质网应激-炎症反应的药物的研发。  相似文献   

8.
Dominant negative PMA1 mutants render misfolded proteins that are retained in the endoplasmic reticulum (ER) and slowly degraded by ER-associated degradation. Accumulation of misfolded proteins in the ER activates an ER-to-nucleus signalling pathway termed the unfolded protein response (UPR). We have used a PMA1-D378T dominant negative mutant to analyse its impact on UPR induction. Our results show that overexpression of the misfolded mutant Pma1 does not lead to activation of the UPR. In addition, in mutants with a constitutively activated UPR the turnover rate of the mutant ATPase is not altered. To determine if the expression of the misfolded mutant protein induces some other kind of response we performed global gene expression analysis experiments in yeasts overexpressing either wild type or dominant lethal PMA1 alleles. The results suggest that the high osmolarity glycerol (Hog1) mitogen-activated protein kinase (MAPK) pathway is activated by both wild type and mutant ATPases. We show that expression of the PMA1 alleles induces phosphorylation of Hog1 and activation of the Hog1 MAPK cascade. This activation is mediated by the Sln1 branch of the stress-dependent Hog1 MAPK network. Finally, we show that at least two other plasma membrane proteins are also able to activate the Hog1 MAPK system.  相似文献   

9.
Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate‐intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN‐1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin‐like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI‐induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post‐MI heart failure rats. These results reinforce the importance of AET as primary non‐pharmacological therapy to cardiovascular disease.  相似文献   

10.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the ER membrane kinases PERK and IRE1 leading to the unfolded protein response (UPR). We show here that UPR activation triggers PERK and IRE1 segregation from BiP and their sorting with misfolded proteins to the ER-derived quality control compartment (ERQC), a pericentriolar compartment that we had identified previously. PERK phosphorylates translation factor eIF2alpha, which then accumulates on the cytosolic side of the ERQC. Dominant negative PERK or eIF2alpha(S51A) mutants prevent the compartmentalization, whereas eIF2alpha(S51D) mutant, which mimics constitutive phosphorylation, promotes it. This suggests a feedback loop where eIF2alpha phosphorylation causes pericentriolar concentration at the ERQC, which in turn amplifies the UPR. ER-associated degradation (ERAD) is an UPR-dependent process; we also find that ERAD components (Sec61beta, HRD1, p97/VCP, ubiquitin) are recruited to the ERQC, making it a likely site for retrotranslocation. In addition, we show that autophagy, suggested to play a role in elimination of aggregated proteins, is unrelated to protein accumulation in the ERQC.  相似文献   

11.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


12.
Study of the unfolded protein responses (UPR) is mainly addressed by challenging eukaryotic cells with chemical compounds that impair calcium, redox or glycan homeostasis. These dramatically alter the endoplasmic reticulum (ER) environment and function, but also trigger pleiotropic effects that may result in multi‐organellar failure and cell death. Recent works showed that UPR induced by the accumulation of unfolded polypeptides in the ER lumen drastically differs from chemically induced UPR. Unfolded proteins are tolerated by cells, which activate a finely tuned UPR without entering apoptotic programs. How cells adapt the UPR to the burden of misfolded proteins, what structural features of the accumulating proteins determine UPR intensity and how these mechanisms translate into disease are crucial questions to be address in the future.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) pathology is linked to the aberrant aggregation of specific proteins, including TDP‐43, FUS, and SOD1, but it is not clear why these aggregation events cause ALS. In this issue of The EMBO Journal, Mateju et al (2017) report a direct link between misfolded proteins accumulating in stress granules and the phase transition of these stress granules from liquid to solid. This discovery provides a model connecting protein aggregation to stress granule dysfunction.  相似文献   

14.
Missense mutations in the proteolipid protein 1 (PLP1) gene cause a wide spectrum of hypomyelinating disorders, from mild spastic paraplegia type 2 to severe Pelizaeus-Merzbacher disease (PMD). Mutant PLP1 accumulates in the endoplasmic reticulum (ER) and induces ER stress. However, the link between the clinical severity of PMD and the cellular response induced by mutant PLP1 remains largely unknown. Accumulation of misfolded proteins in the ER generally leads to up-regulation of ER chaperones to alleviate ER stress. Here, we found that expression of the PLP1-A243V mutant, which causes severe disease, depletes some ER chaperones with a KDEL (Lys-Asp-Glu-Leu) motif, in HeLa cells, MO3.13 oligodendrocytic cells, and primary oligodendrocytes. The same PLP1 mutant also induces fragmentation of the Golgi apparatus (GA). These organelle changes are less prominent in cells with milder disease-associated PLP1 mutants. Similar changes are also observed in cells expressing another disease-causing gene that triggers ER stress, as well as in cells treated with brefeldin A, which induces ER stress and GA fragmentation by inhibiting GA to ER trafficking. We also found that mutant PLP1 disturbs localization of the KDEL receptor, which transports the chaperones with the KDEL motif from the GA to the ER. These data show that PLP1 mutants inhibit GA to ER trafficking, which reduces the supply of ER chaperones and induces GA fragmentation. We propose that depletion of ER chaperones and GA fragmentation induced by mutant misfolded proteins contribute to the pathogenesis of inherited ER stress-related diseases and affect the disease severity.  相似文献   

15.
Mutation of Tar DNA‐binding protein 43 (TDP‐43) is linked to amyotrophic lateral sclerosis. Although astrocytes have important roles in neuron function and survival, their potential contribution to TDP‐43 pathogenesis is unclear. Here, we created novel lines of transgenic rats that express a mutant form of human TDP‐43 (M337V substitution) restricted to astrocytes. Selective expression of mutant TDP‐43 in astrocytes caused a progressive loss of motor neurons and the denervation atrophy of skeletal muscles, resulting in progressive paralysis. The spinal cord of transgenic rats also exhibited a progressive depletion of the astroglial glutamate transporters GLT‐1 and GLAST. Astrocytic expression of mutant TDP‐43 led to activation of astrocytes and microglia, with an induction of the neurotoxic factor Lcn2 in reactive astrocytes that was independent of TDP‐43 expression. These results indicate that mutant TDP‐43 in astrocytes is sufficient to cause non‐cell‐autonomous death of motor neurons. This motor neuron death likely involves deficiency in neuroprotective genes and induction of neurotoxic genes in astrocytes.  相似文献   

16.
The accumulation of aberrantly folded proteins can lead to cell dysfunction and death. Currently, the mechanisms of toxicity and cellular defenses against their effects remain incompletely understood. In the endoplasmic reticulum (ER), stress caused by misfolded proteins activates the unfolded protein response (UPR). The UPR is an ER-to-nucleus signal transduction pathway that regulates a wide variety of target genes to maintain cellular homeostasis. We studied the effects of ER stress in budding yeast through expression of the well-characterized misfolded protein, CPY*. By challenging cells within their physiological limits to resist stress, we show that the UPR is required to maintain essential functions including protein translocation, glycosylation, degradation, and transport. Under stress, the ER-associated degradation (ERAD) pathway for misfolded proteins is saturable. To maintain homeostasis, an "overflow" pathway dependent on the UPR transports excess substrate to the vacuole for turnover. The importance of this pathway was revealed through mutant strains compromised in the vesicular trafficking of excess CPY*. Expression of CPY* at levels tolerated by wild-type cells was toxic to these strains despite retaining the ability to activate the UPR.  相似文献   

17.
The endoplasmic reticulum (ER) is the cell organelle where secretory and membrane proteins are synthesized and folded. Correctly folded proteins exit the ER and are transported to the Golgi and other destinations within the cell, but proteins that fail to fold properly—misfolded proteins—are retained in the ER and their accumulation may constitute a form of stress to the cell—ER stress. Several signaling pathways, collectively known as unfolded protein response (UPR), have evolved to detect the accumulation of misfolded proteins in the ER and activate a cellular response that attempts to maintain homeostasis and a normal flux of proteins in the ER. In certain severe situations of ER stress, however, the protective mechanisms activated by the UPR are not sufficient to restore normal ER function and cells die by apoptosis. Most research on the UPR used yeast or mammalian model systems and only recently Drosophila has emerged as a system to study the molecular and cellular mechanisms of the UPR. Here, we review recent advances in Drosophila UPR research, in the broad context of mammalian and yeast literature.  相似文献   

18.
Cells respond to accumulation of misfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR) signaling pathway. The UPR restores ER homeostasis by degrading misfolded proteins, inhibiting translation, and increasing expression of chaperones that enhance ER protein folding capacity. Although ER stress and protein aggregation have been implicated in aging, the role of UPR signaling in regulating lifespan remains unknown. Here we show that deletion of several UPR target genes significantly increases replicative lifespan in yeast. This extended lifespan depends on a functional ER stress sensor protein, Ire1p, and is associated with constitutive activation of upstream UPR signaling. We applied ribosome profiling coupled with next generation sequencing to quantitatively examine translational changes associated with increased UPR activity and identified a set of stress response factors up-regulated in the long-lived mutants. Besides known UPR targets, we uncovered up-regulation of components of the cell wall and genes involved in cell wall biogenesis that confer resistance to multiple stresses. These findings demonstrate that the UPR is an important determinant of lifespan that governs ER stress and identify a signaling network that couples stress resistance to longevity.  相似文献   

19.
20.
Protein maturation in the endoplasmic reticulum (ER) is subject to stringent quality control. Terminally misfolded polypeptides are usually ejected into the cytoplasm and targeted for destruction by the proteasome. Ubiquitin conjugation is essential for both extraction and proteolysis. We discuss the role of the ubiquitin conjugation machinery in this pathway and focus on the role of ubiquitin ligase complexes as gatekeepers for membrane passage. We then examine the type of ubiquitin modification applied to the misfolded ER protein and the role of de-ubiquitylating enzymes in the extraction of proteins from the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号