首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The understanding and control of nanostructures with regard to transport and recombination mechanisms is of key importance in the optimization of the power conversion efficiency (PCE) of solar cells based on inorganic nanocrystals. Here, the transport properties of solution‐processed solar cells are investigated using photo‐CELIV (photogenerated charge carrier extraction by linearly increasing voltage) and transient photovoltage techniques; the solar cells are prepared by an in‐situ formation of CuInS2 nanocrystals (CIS NCs) at the low temperature of 270 °C. Structural and morphological analyses reveal the presence of a metastable CuIn5S8 phase and a disordered morphology in the CuInS2 nanocrytalline films consisting of polycrystalline grains at the nanoscale range. Consistent with the disordered morphology of the CIS NC thin films, the CIS NC devices are characterized by a low carrier mobility. The carrier density dynamic indicates that the recombination kinetics in these devices follows the dispersive bimolecular recombination model and does not fully behave in a diffusion‐controlled manner, as expected by Langevin‐type recombination. The mobility–lifetime product of the charge carriers properly explains the performance of the thin (200 nm) CIS NC solar cell with a high fill‐factor of 64% and a PCE of over 3.5%.  相似文献   

2.
We report on the effects of screening of the electric field by doping‐induced mobile charges on photocurrent collection in operational organic solar cells. Charge transport and recombination were studied using double injection (DI) and charge extraction by linearly increasing voltage (CELIV) transient techniques in bulk‐heterojunction solar cells made from acceptor‐donor blends of poly(3‐n‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM). It is shown that the screening of the built‐in field in operational solar cells can be controlled by an external voltage while the influence on charge transport and recombination is measured. An analytical theory to extract the bimolecular recombination coefficient as a function of electric field from the injection current is also reported. The results demonstrate that the suppressed (non‐Langevin) bimolecular recombination rate and charge collection are not strongly affected by native doping levels in this materials combination. Hence, it is not necessary to reduce the level of doping further to improve the device performance of P3HT‐based solar cells.  相似文献   

3.
Charge‐transfer (CT) state electroluminescence is investigated in several polymer:fullerene bulk heterojunction solar cells. The ideality factor of the electroluminescence reveals that the CT emission in polymer:fullerene solar cells originates from free‐carrier bimolecular recombination at the donor‐acceptor interface, rather than a charge‐trap‐mediated process. The fingerprint of the presence of nonradiative trap‐assisted recombination, a voltage‐dependent CT electroluminescence quantum efficiency, is only observed for the P3HT:PCBM system, which is explained by a reduction of the competing bimolecular recombination rate. These results are in agreement with measurements of the illumination‐intensity dependence of the open‐circuit voltage.  相似文献   

4.
It is important to accurately measure the charge carrier lifetime, a crucial parameter that influences the collection efficiency in organic solar cells. Five transient and small perturbation experimental techniques that measure charge carrier lifetime are applied to a device composed of the polymer PDTSiTTz blended with the fullerene PCBM: time‐resolved charge extraction (TRCE), transient absorption spectroscopy (TAS), photoinduced charge extraction by linearly increasing voltage (photo‐CELIV), transient photovoltage, and electrochemical impedance spectroscopy. The motivation is to perform a comprehensive comparison of several different lifetime measurement techniques on the same device in order to assess their relative accuracy, applicability to operational devices, and utility in data analysis. The techniques all produce similar charge carrier lifetimes at high charge densities, despite previous suggestions that transient methods are less accurate than small perturbation ones. At lower charge densities an increase in the apparent reaction order is observed. This may be related to surface recombination at the contacts beginning to dominate, or an inhomogeneous charge distribution. A combination of TAS and TRCE appears suitable. TAS enables the investigation of recombination mechanisms at early times since it is not limited by RC (resistance‐capacitance product) or charge extraction losses. Conversely, TRCE is useful particularly at low densities when other mechanisms, such as surface recombination, may occur.  相似文献   

5.
Light induced degradation has been observed in the performance of organic solar cells in the absence of oxygen and a detailed analysis of the effect of this photodegradation on optical and electrical features has been accomplished. This photodegradation study has been performed on encapsulated photovoltaic blend devices comprised of the silole‐based donor–acceptor polymer KP115 blended with [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM). Photodegradation induces an almost 20% decrease in power conversion efficiency, primarily as a result of a reduction in short circuit current, JSC. The initial burn‐in phase of the photodegradation has been examined using a combination of transient absorption spectroscopy and charge extraction measurements, including photo‐CELIV (charge extraction by linearly increasing voltage) and time‐resolved charge extraction using a nanosecond switch. These measurements reveal a bimodal KP115 polaron population, comprised of both delocalised and localised/trapped charge carriers. The photodegradation results are consistent with an alteration of this bimodal KP115 polaron population, with the polarons becoming trapped in a broader, deeper density of localised states. Under laser illumination and at open circuit conditions, this enhanced trapping after light soaking inhibits charges from undergoing bimolecular recombination, leading to higher extracted charge densities at long times. At the lower charge densities operating at short circuit conditions and under continuous white light illumination, where bimolecular recombination is much less significant, the JSC decreases after light soaking due to a reduction in the efficiency of trapped charge carrier extraction.  相似文献   

6.
Charge transport and recombination are studied for organic solar cells fabricated using blends of polymer poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (Si‐PCPDTBT) with [6,6]‐phenyl‐C61‐butyric acid methyl ester (mono‐PCBM) and the bis‐adduct analogue of mono‐PCBM (bis‐PCBM). The photocurrent of Si‐PCPDTBT:bis‐PCBM devices shows a strong square root dependence on the effective applied voltage. From the relationship between the photocurrent and the light intensity, we found that the square‐root dependence of the photocurrent is governed by the mobility‐lifetime (μτ) product of charge carriers while space‐charge field effects are insignificant. The fill factor (FF) and short circuit current density (Jsc) of bis‐PCBM solar cells show a considerable increase with temperature as compared to mono‐PCBM solar cells. SCLC analysis of single carrier devices proofs that the mobility of both electrons and holes is significantly lowered when replacing mono‐PCBM with bis‐PCBM. The increased recombination in Si‐PCPDTBT:bis‐PCBM solar cells is therefore attributed to the low carrier mobilities, as the transient photovoltage measurements show that the carrier lifetime of devices are not significantly altered by using bis‐PCBM instead of mono‐PCBM.  相似文献   

7.
Achieving the highest power conversion efficiencies in bulk heterojunction organic solar cells requires a morphology that delivers electron and hole percolation pathways for optimized transport, plus sufficient donor:acceptor contact area for near unity charge transfer state formation. This is a significant structural challenge, particularly in semiconducting polymer:fullerene systems. This balancing act in the model high efficiency PTB7:PC70BM blend is studied by tuning the donor:acceptor ratio, with a view to understanding the recombination loss mechanisms above and below the fullerene transport percolation threshold. The internal quantum efficiency is found to be strongly correlated to the slower carrier mobility in agreement with other recent studies. Furthermore, second‐order recombination losses dominate the shape of the current density–voltage curve in efficient blend combinations, where the fullerene phase is percolated. However, below the charge transport percolation threshold, there is an electric‐field dependence of first‐order losses, which includes electric‐field‐dependent photogeneration. In the intermediate regime, the fill factor appears to be limited by both first‐ and second‐order losses. These findings provide additional basic understanding of the interplay between the bulk heterojunction morphology and the order of recombination in organic solar cells. They also shed light on the limitations of widely used transport models below the percolation threshold.  相似文献   

8.
A novel technique based upon injection‐charge extraction by linearly increasing voltage (i‐CELIV) in a metal‐insulator‐semiconductor (MIS) diode structure is described for studying charge transport in organic semiconductors. The technique (MIS‐CELIV) allows selective measurement of both electron and hole mobilities of organic solar cells with active layers thicknesses representative of operational devices. The method is used to study the model high efficiency bulk heterojunction combination poly[N‐9′′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) and [6,6]‐phenyl C70‐butyric acid methyl ester (PC70BM) at various blend ratios. The absence of bipolar transport in PCDTBT‐and‐PC70BM‐only diodes is shown and strongly imbalanced carrier mobility is found in the most efficient “optimized” blend ratios. The mobility measurements are correlated with overall device performance and it is found that balanced and high charge carrier mobility are not necessarily required for high efficiencies in thin film organic solar cells.  相似文献   

9.
The selectivity of electrodes of solar cells is a critical factor that can limit the overall efficiency. If the selectivity of an electrode is not sufficient both electrons and holes recombine at its surface. In materials with poor transport properties such as in organic solar cells, these surface recombination currents are accompanied by large gradients of the quasi‐Fermi energies as the driving force. Experimental results from current–voltage characteristics, advanced photo‐ and electroluminescence as well as charge extraction of three different photoactive materials are shown and compared to drift‐diffusion simulations. It can be concluded that in cases of electrodes with reduced selectivity the decrease of the open‐circuit voltage can be divided into two distinct contributions, the reduction of the overall steady‐state charge carrier density and the gradients of the quasi‐Fermi energies. The results clearly show that for photoactive layers with poor transport properties, the gradient of the quasi‐Fermi energy in the vicinity of the contact is the main contribution to the loss in open‐circuit voltage. For imbalanced mobilities, this gives rise to the phenomenon that it is more challenging to realize a selective contact for the less mobile charge carrier, i.e., the hole contact in most organic solar cells.  相似文献   

10.
The charge generation and recombination dynamics in polymer/polymer blend solar cells composed of poly(3‐hexylthiophene) (P3HT, electron donor) and poly[2,7‐(9,9‐didodecylfluorene)‐alt‐5,5‐(4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothiadiazole)] (PF12TBT, electron acceptor) are studied by transient absorption measurements. In the unannealed blend film, charge carriers are efficiently generated from polymer excitons, but some of them recombine geminately. In the blend film annealed at 160 °C, on the other hand, the geminate recombination loss is suppressed and hence free carrier generation efficiency increases up to 74%. These findings suggest that P3HT and PF12TBT are intermixed within a few nanometers, resulting in impure PF12TBT and disordered P3HT domains. The geminate recombination is likely due to charge carriers generated on isolated polymer chains in the matrix of the other polymer and at the domain interface with disordered P3HT. The undesired charge loss by geminate recombination is reduced by both the purification of the PF12TBT‐rich domain and crystallization of the P3HT chains. These results show that efficient free carrier generation is not inherent to the polymer/fullerene domain interface, but is possible with polymer/polymer systems composed of crystalline donor and amorphous acceptor polymers, opening up a new potential method for the improvement of solar cell materials.  相似文献   

11.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   

12.
Charge extraction rate in solar cells made of blends of electron donating/accepting organic semiconductors is typically slow due to their low charge carrier mobility. This sets a limit on the active layer thickness and has hindered the industrialization of organic solar cells (OSCs). Herein, charge transport and recombination properties of an efficient polymer (NT812):fullerene blend are investigated. This system delivers power conversion efficiency of >9% even when the junction thickness is as large as 800 nm. Experimental results indicate that this material system exhibits exceptionally low bimolecular recombination constant, 800 times smaller than the diffusion‐controlled electron and hole encounter rate. Comparing theoretical results based on a recently introduced modified Shockley model for fill factor, and experiments, clarifies that charge collection is nearly ideal in these solar cells even when the thickness is several hundreds of nanometer. This is the first realization of high‐efficiency Shockley‐type organic solar cells with junction thicknesses suitable for scaling up.  相似文献   

13.
It is demonstrated that a combination of microsecond transient photocurrent measurements and film morphology characterization can be used to identify a charge‐carrier blocking layer within polymer:fullerene bulk‐heterojunction solar cells. Solution‐processed molybdenum oxide (s‐MoOx) interlayers are used to control the morphology of the bulk‐heterojunction. By selecting either a low‐ or high‐temperature annealing (70 °C or 150 °C) for the s‐MoOx layer, a well‐performing device is fabricated with an ideally interconnected, high‐efficiency morphology, or a device is fabricated in which the fullerene phase segregates near the hole extracting contact preventing efficient charge extraction. By probing the photocurrent dynamics of these two contrasting model systems as a function of excitation voltage and light intensity, the optoelectronic responses of the solar cells are correlated with the vertical phase composition of the polymer:fullerene active layer, which is known from dynamic secondary‐ion mass spectroscopy (DSIMS). Numerical simulations are used to verify and understand the experimental results. The result is a method to detect poor morphologies in operating organic solar cells.  相似文献   

14.
A new charge recombination layer for inverted tandem polymer solar cells is reported. A bilayer of MoOX/Al2O3:ZnO nanolaminate is shown to enable efficient charge recombination in inverted tandem cells. A polymer surface modification on the MoOX/Al2O3:ZnO nanolaminate bilayer increases the work function contrast between the two outward surfaces of the charge recombination layer, further improving the performance of tandem solar cells. An analysis of the electrical, optical, and surface properties of the charge recombination layer is presented. Inverted tandem polymer solar cells, with two photoactive layers comprising poly (3‐hexylthiophene) (P3HT):indene‐C60 bisadduct (IC60BA) for the bottom cell and poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene))‐2,6‐diyl] (PBDTTT‐C):[6,6]‐phenyl C61 butyric acid methyl ester (PC60BM) for the top cell, yield an open‐circuit voltage of 1481 mV ± 15 mV, a short‐circuit current density of 7.1 mA cm?2 ± 0.1 mA cm?2, and a fill factor of 0.62 ± 0.01, resulting in a power conversion efficiency of 6.5% ± 0.1% under simulated AM 1.5G, 100 mW cm?2 illumination.  相似文献   

15.
Window integrated photovoltaics for automotive and building applications are a promising market segment for organic solar modules. Besides semi‐transparency, window integrated applications require a reasonable transparency perception and good color rendering properties in order to be suitable for realistic scene illumination. Here, the transmitted light through semi‐transparent organic solar cells comprising the polymer/fullerene blend poly[(4,4'‐bis(2‐ethylhexyl)dithieno[3,2‐b:2',3'‐d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl]: [6,6]‐phenyl C71‐butric acid methyl ester (PSBTBT:PC70BM) as active layer and a sputtered aluminum doped zinc oxide cathode were found to exhibit a color neutral perception for the human eye and very good color rendering properties. Moreover, the electrical cell properties allow for efficient energy harvesting with an overall power conversion efficiency η ≈ 3%.  相似文献   

16.
Organic solar cells that are free of burn‐in, the commonly observed rapid performance loss under light, are presented. The solar cells are based on poly(3‐hexylthiophene) (P3HT) with varying molecular weights and a nonfullerene acceptor (rhodanine‐benzothiadiazole‐coupled indacenodithiophene, IDTBR) and are fabricated in air. P3HT:IDTBR solar cells light‐soaked over the course of 2000 h lose about 5% of power conversion efficiency (PCE), in stark contrast to [6,6]‐Phenyl C61 butyric acid methyl ester (PCBM)‐based solar cells whose PCE shows a burn‐in that extends over several hundreds of hours and levels off at a loss of ≈34%. Replacing PCBM with IDTBR prevents short‐circuit current losses due to fullerene dimerization and inhibits disorder‐induced open‐circuit voltage losses, indicating a very robust device operation that is insensitive to defect states. Small losses in fill factor over time are proposed to originate from polymer or interface defects. Finally, the combination of enhanced efficiency and stability in P3HT:IDTBR increases the lifetime energy yield by more than a factor of 10 when compared with the same type of devices using a fullerene‐based acceptor instead.  相似文献   

17.
Length of the terminal alkyl chains at dicyanovinyl (DCV) groups of two dithienosilole (DTS) containing small molecules ( DTS(Oct)2‐(2T‐DCV‐Me)2 and DTS(Oct)2‐(2T‐DCV‐Hex)2 ) is investigated to evaluate how this affects the molecular solubility and blend morphology as well as their performance in bulk heterojunction organic solar cells (OSCs). While the DTS(Oct)2‐(2T‐DCV‐Me)2 (a solubility of 5 mg mL?1) system exhibits both high short circuit current density (J sc) and high fill factor, the DTS(Oct)2‐(2T‐DCV‐Hex)2 (a solubility of 24 mg mL?1) system in contrast suffers from a poor blend morphology as examined by atomic force morphology and grazing incidence X‐ray scattering measurements, which limit the photovoltaic properties. The charge generation, transport, and recombination dynamics associated with the limited device performance are investigated for both systems. Nongeminate recombination losses in DTS(Oct)2‐(2T‐DCV‐Hex)2 system are demonstrated to be significant by combining space charge limited current analysis and light intensity dependence of current–voltage characteristics in combination with photogenerated charge carrier extraction by linearly increasing voltage and transient photovoltage measurements. DTS(Oct)2‐(2T‐DCV‐Me)2 in contrast performs nearly ideal with no evidence of nongeminate recombination, space charge effects, or mobility limitation. These results demonstrate the importance of alkyl chain engineering for solution‐processed OSCs based on small molecules as an essential design tool to overcome transport limitations.  相似文献   

18.
Even though significant breakthroughs with over 18% power conversion efficiencies (PCEs) in polymer:non‐fullerene acceptor (NFA) bulk heterojunction organic solar cells (OSCs) have been achieved, not many studies have focused on acquiring a comprehensive understanding of the underlying mechanisms governing these systems. This is because it can be challenging to delineate device photophysics in polymer:NFA blends comprehensively, and even more complicated to trace the origins of the differences in device photophysics to the subtle differences in energetics and morphology. Here, a systematic study of a series of polymer:NFA blends is conducted to unify and correlate the cumulative effects of i) voltage losses, ii) charge generation efficiencies, iii) non‐geminate recombination and extraction dynamics, and iv) nuanced morphological differences with device performances. Most importantly, a deconvolution of the major loss processes in polymer:NFA blends and their connections to the complex BHJ morphology and energetics are established. An extension to advanced morphological techniques, such as solid‐state NMR (for atomic level insights on the local ordering and donor:acceptor π? π interactions) and resonant soft X‐ray scattering (for donor and acceptor interfacial area and domain spacings), provide detailed insights on how efficient charge generation, transport, and extraction processes can outweigh increased voltage losses to yield high PCEs.  相似文献   

19.
Efficient ternary polymer solar cells are constructed by incorporating an electron‐deficient chromophore (5Z,5′Z)‐5,5′‐((7,7′‐(4,4,9,9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(6‐fluorobenzo[c][1,2,5]thiadiazole‐7,4‐diyl))bis(methanylylidene))bis(3‐ethyl‐2‐thioxothiazolidin‐4‐one) (IFBR) as an additional component into the bulk‐heterojunction film that consists of a wide‐bandgap conjugated benzodithiophene‐alt‐difluorobenzo[1,2,3]triazole based copolymer and a fullerene acceptor. With respect to the binary blend films, the incorporation of a certain amount of IFBR leads to simultaneously enhanced absorption coefficient, obviously extended absorption band, and improved open‐circuit voltage. Of particular interest is that devices based on ternary blend film exhibit much higher short‐circuit current densities than the binary counterparts, which can be attributed to the extended absorption profiles, enhanced absorption coefficient, favorable film morphology, as well as formation of cascade energy level alignment that is favorable for charge transfer. Further investigation indicates that the ternary blend device exhibits much shorter charge carrier extraction time, obviously reduced trap density and suppressed trap‐assisted recombination, which is favorable for achieving high short‐circuit current. The combination of these beneficial aspects leads to a significantly improved power conversion efficiency of 8.11% for the ternary device, which is much higher than those obtained from the binary counterparts. These findings demonstrate that IFBR can be a promising electron‐accepting material for the construction of ternary blend films toward high‐performance polymer solar cells.  相似文献   

20.
The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 °C in bulk heterojunctions based on the benzodithiophene‐based polymer (the poly[[4,8‐bis[(2‐ethylhexyl)oxy]‐benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7:PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 °C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号