首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
The flavonol glycosides of quercetin, isorhamnetin and kaempferol were isolated from Zea mays pollen. The most prominent flavonols were diglycosides of quercetin and isorhamnetin. Flavonol 3-O-glucosides of quercetin, isorhamnetin and kaempferol, and triglucosides of quercetin and isorhamnetin, were minor components. The flavonoid pattern of maize pollen is characterized by the accumulation of quercetin and isorhamnetin diglycosides and by the absence of flavones, which are common in other maize tissues.  相似文献   

2.
Three new flavonol triglycosides quercetin, kaempferol and isorhamnetin 3-rhamnosyl(1----2)galactoside-7-glucosides have been isolated from leaves and stems of Blackstonia perfoliata. This species together with three other genera of the tribe Gentianeae, subtribe Chlorae: Centaurium, Coutoubea and Eustoma, is unusual in producing flavonol glycosides instead of C-glycosyl flavones, the more characteristic flavonoid constituents of the Gentianaceae.  相似文献   

3.
Eight flavonol glycosides were detected in the three species of theFagonia sinaica complex. They were fully characterized as the 3-glucosides of kaempferol, quercetin and isorhamnetin, 3-rutinoside of quercetin and 3,7-diglucoside of quercetin and isorhamnetin. Two additional glycosides were partially characterized as a kaempferol 3,7-diglycoside and quercetin 3-diglycoside.  相似文献   

4.
Identification of the phenolic constituents in flowers of nine palm species has revealed that charged C-glycosylflavones and caffeylshikimic acid are characteristically present. Flavonol glycosides are also common; the 3-glucosides, 3-rutinosides and 3,4′-diglucosides of quercetin and isorhamnetin and the 7-glucoside and 3,7-diglucoside of quercetin are all variously present. Tricin 7-glucoside, luteolin 7-rutinoside and several unchanged C-glycosylflavones were also detected. Male flowers of Phoenix canariensis differ from female flowers in having flavonol glycosides. As expected, in most species studied, flavonoid patterns in the flowers vary considerably from those found in the leaves.  相似文献   

5.
Seventeen flavonol glycosides were identified from needles of Abies amabilis and these were based on 6 aglycone types: syringetin, isorhamnetin, kaempferol, quercetin, laricytrin and myricetin. Glycosides were 3-O-rutinosides, 3-O-glucosides, 3-O-galactosides or 3-O-rhamnosides. Also identified as needle constituents were rhamnosylvitexin and dihydroquercetin.  相似文献   

6.
Four flavonol glucosides, one new, have been isolated from a methanolic extract of Phlomis spectabilis. Their structures were established as the 3-glucosides and 3-(6″-(E)-p-coumaroyl)glucosides of kaempferol and of kaempferol 7,4′-dimethyl ether.  相似文献   

7.
A survey of flavonoids in the leaves of 81 species of the Zingiberales showed that, while most of the major classes of flavonoid are represented in the order, only two families, the Zingiberaceae and Marantaceae are rich in these constituents. In the Musaceae (in 9 species), Strelitziaceae (in 8 species) and Cannaceae (1 of 2 species) flavonol glycosides were detected in small amount and in the Lowiaceae no flavonoids were fully identified. In the Zingiberaceae kaempferol (in 22%), quercetin (72%) and proanthocyanidins (71%) are distributed throughout the family. The two subfamilies of the Zingiberaceae may be distinguished by the presence of myricetin (in 26%), isorhamnetin (10%) and syringetin (3%) in the Zingiberoideae and of flavone C-glycosides (in 86% of taxa) in the Costoideae. A number of genera have distinctive flavonol profiles: e.g. Hedychium species have myricetin and quercetin. Roscoea species isorhamnetin and quercetin and Alpinia species kaempferol and quercetin glycosides. A new glycoside, syringetin 3-rhamnoside was identified in Hedychium stenopetalum. In the Zingiberoideae flavonols were found in glycosidic combination with glucuronic acid, rhamnose and glucose but glucuronides were not detected in the Costoideae or elsewhere in the Zingiberales. The Marantaceae is chemically the most diverse group and may be distinguished from other members of the Zingiberales by the occurrence of both flavone O- and C-glycosides and the absence of kaempferol and isorhamnetin glycosides. The distribution of flavonoid constituents within the Marantaceae does not closely follow the existing tribai or generic limits. Flavonols (in 50% of species). flavones (20%) and flavone C-glycosides (40%) are found with similar frequency in the two tribes and in the genera Calathea and Maranta both flavone and flavonol glycosides occur. Apigenin- and luteolin-7-sulphates and luteolin-7,3′-disulphate were identified in Maranta bicolor and M. leuconeura var. kerchoveana and several flavone C-glycosides sulphates in Stromanthe sanguinea. Anthocyanins were identified in those species with pigmented leaves or stems and a common pattern based on cyanidin-and delphinidin-3-rutinosides was observed throughout the group. Finally the possible relationship of the Zingiberales to the Commelinales, Liliales, Bromeliales and Fluviales is discussed.  相似文献   

8.
The flavonoid glycosides of Euphorbia retusa and E. sanctae-catharinae are reported. Besides a number of common flavonol glycosides, kaempferol and quercetin 3-glucuronide-7-glucosides are reported for the first time.  相似文献   

9.
Lipophilic and vacuolar flavonoids were separately identified in representative temperate species of the genera Anthemis, Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum. The four Anthemis species investigated variously produced four main surface constituents, in leaf and flower: santin, quercetagetin 3,6,3′-trimethyl ether, scutellarein 6,4′-dimethyl ether and 6-hydroxyluteolin 6,3′-dimethyl ether. By contrast, surface extracts of disc and ray florets of the species of Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum surveyed yielded five common flavones in the free state: apigenin, luteolin, acacetin, apigenin 7-methyl ether and chrysoeriol. Polar flavonoids were isolated and identified in leaf, ray floret and disc floret of all the above plants. Anthemis species were distinctive in having flavonol glycosides in the leaves, whereas the leaf flavonoids of the other taxa were generally flavone O-glycosides. The 3-glucoside and 3-rutinoside of patuletin were characterised for the first time from Anthemis tinctoria ssp. subtinctoria. Two new flavonol glycosides, the 5-glucuronides of quercetin and kaempferol, were obtained from the leaf of Leucanthemum vulgare, where they co-occur with the related 5-glucosides and with several flavone glycosides. The ray florets of these Anthemideae generally contain apigenin and/or luteolin 7-glucoside and 7-glucuronide, whereas disc florets have additional flavonol glycosides, notably the 7-glucosides of quercetin and patuletin and the 7-glucuronide of quercetin. A comparison of the flavonoid pattern encountered here with those previously recorded for Tanacetum indicate some chemical affinity between Anthemis and Tanacetum. Flavonoid patterns of the other five genera are more distinct from those of Tanacetum and suggest that those genera form a related group. All 14 species surveyed for their flavonoid profiles have distinctive constituents and the chemical data are in harmony with modern taxonomic treatments of the “Chrysanthemum complex” as a series of separate genera.  相似文献   

10.
Eighteen flavonol glycosides were isolated from petal and leaf-stem of Limnanthes douglasii. There were six aglycones: kaempferol, quercetin, isorhamnetin, myriectin, syringetin and a new flavonol, myricetin 3′-methyl ether. Each occurred as the 3-rutinoside, 3-rhamnosylrutinoside and 3-rutinoside-7-glucoside.  相似文献   

11.
The flavonoid and phenolic acid pattern of Adenostoma fasciculatum and A. sparsifolium, two dominant, endemic species of the Californian chaparral, was analysed qualitatively and quantitatively. Adenostoma sparsifolium was found to secrete large amounts of lipophilic, unusually substituted flavonoids onto the leaf surface; A. fasciculatum produces five hydrophilic flavonol 3-O-glycosides of kaempferol, quercetin and isorhamnetin. The phenolic acid pattern differed quantitatively but not qualitatively between the species. The amounts of phenolic acids that could be detected within the leaves, leaf litter and soil beneath the shrubs seem too small to explain allelopathic effects as the main reason for the dominance of the two species.  相似文献   

12.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

13.
《Phytochemistry》1987,26(9):2557-2558
The 7-, 3′- and 4′-glucosides of luteolin, the 7-glucoside and 6,8-di-C-glucoside of apigenin were isolated from Trichosanthes kirilowii var. japonica. Kaempferol 3,7-di-rhamnoside and 3-glucoside-7-rhamnoside were identified from T. cucumeroides, kaempferol 3-galactoside and 3-sophoroside were also identified from T. anguina. Quercetin-3-rutinoside was detected from T. multiloba and T. rostrata. T. bracteata afforded luteolin 3′-glucoside and kaempferol 3-rutinoside, and T. kirilowii afforded luteolin 7-, 3′- and 4′-glucosides and apigenin 7-glucoside.  相似文献   

14.
Perianth parts, in particular, tepals of Echinocereus triglochidiatus var. gurneyi yielded a complex mixture of dihydroflavonols and dihydroflavonol 7-O-glucosides. Dihydroquercetin and its 7-O-glucoside were the predominant compounds while dihydrokaempferol and dihydromyricetin and their 7-O-glycosides were present in lesser amounts. Quercetin 7-O-glucoside was the principal flavonol glycoside: others present were quercetin and kaempferol 3-O-glucosides and 3-O-rhamnosylglucosides. The epidermis and spines yielded only traces of presumed flavonols as determined by two-dimensional TLC. No flavonoids were detected in the cortex tissue. This is the first report of dihydroflavonol derivatives from the Cactaceae and constitutes the first record of flavonoids from Echinocereus.  相似文献   

15.
Four new flavonol glycosides have been identified from fresh leaves and fruits of sweet and sour cherries (Prunus avium and P. cerasus) as minor flavonoids: quercetin 3-O-rutinosyl-7,3′-O-bisglucoside; two quercetin 3-O-rutinosyl-4′-di-O-glucosides; kaempferol 3-O-rutinosyl-4′-di-O-glucoside.  相似文献   

16.
Leaf flavonoids from 73 strains ofMatricaria andTripleurospermum are compared. 7-Glucosides of quercetin, isorhamnetin and luteolin together with small amounts of chrysoeriol and apigenin 7-glucoside are typical for the two genera.Matricaria differs fromTripleurospermum by the additional occurrence of 6-hydroxyluteolin 7-glucoside as well as 7-rhamnosylglucosides of luteolin and chrysoeriol. Polyacetylene data obtained so far also confirm the generic separation. WithinTripleurospermum the occurrence of flavon 4′-glucosides and accumulation of apigenin 7-glucoside may contribute to a more natural arrangement of the species and to suggestions concerning their evolution and geographical differentiation.Tripleurospermum with its perennial species and dominating flavonol glycosides evidently occupies a more primitive position, whileMatricaria appears progressively more advanced because of flavonol reduction and 6-hydroxylation of flavones. This is well in line with the distribution and biosynthetic pathways of characteristic polyacetylenes.  相似文献   

17.
The flavonoid patterns in Hazardia species support species delimitations and relationships based on morphology and geography. The compounds thus far elucidated are glycosides of quercetin, kaempferol, isorhamnetin, luteolin, and apigenin, glycoflavones of apigenin, and methoxylated flavonol aglycones.  相似文献   

18.
Two rare anthocyanins, cyanidin 3-(6-malonylglucoside)-7,3′-di(6-sinapylglucoside) and the demalonyl derivative, were characterised as the purple floral pigments of Dendrobium cv. ‘Pompadour’. Nine known flavonol glycosides were also identified, including the 3-rutinoside-7-glucosides of kaempferol and quercetin. One new glycoside was detected: the ferulyl ester of quercetin 7-rutinoside-7-glucoside. These flavonoid patterns are typical for plants in the family Orchidaceae.  相似文献   

19.
《Phytochemistry》1986,25(11):2509-2513
The major flavonoids responsible for flower colours of Eustoma grandiflorum were characterized by TLC, HPLC, spectral and chemical analyses. Anthocyanins were delphinidin 3-rhamnosylgalactoside-5-glucoside and delphinidin 3-galactoside-5-glucoside, each acylated with p-coumaric acid, from the purple cultivar ‘Murasaki no Homare’ and the pelargonidin analogues, each acylated with either p-coumaric or ferulic acids, from the pink cultivar ‘Momo no Mine’. The major flavonol copigments were the 3-rhamnosylgalactoside-7-rhamnoside of myricetin, kaempferol and isorhamnetin and the 3-rhamnosylglucoside-7-rhamnoside of kaempferol and isorhamnetin. Flavonols present acylated with p-coumaric acid were myricetin 3-rhamnosylgalactoside-7-rhamnoside and robinin in both cis and trans forms, and isorhamnetin 3-rhamnosylgalactoside-7-rhamnoside. Robinin also was present acylated with caffeic or ferulic acids. Simulated in vitro colours obtained from the flavonoids present in this germplasm indicated that good blue colours were not attainable. Good blue colours were formed with delphinidin 3-p-coumaroyl-rhamnosylgalactoside-5-glucoside and C-glycosylflavone copigments such as swertisin and isoorientin. These copigments are readily available in other members of the Gentianaceae and this suggests the possibility of genetical engineering endeavours for increasing the colour range of this important new ornamental plant.  相似文献   

20.
From the leaves of Cleome viscosa L., two new flavonol glycosides, named visconoside A (1) and visconoside B (2), together with six known flavonol glycosides, vincetoxicoside A (3), vincetoxicoside B (4), kaempferitrin (5), kaempferide 3-O-β-d-glucopyranoside 7-O-α-l-rhamnopyranoside (6), kaempferol 3-O-β-d-glucopyranoside 7-O-α-l-rhamnopyranoside (7), and isorhamnetin 3-O-β-d-glucopyranoside (8) were isolated by various chromatography methods. Its chemical structure was elucidated by IR, UV, HR-ESI-MS, NMR 1D and 2D experiments and compared with literatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号