首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An integrated preparation of safety‐reinforced poly(propylene carbonate)‐based all‐solid polymer electrolyte is shown to be applicable to ambient‐temperature solid polymer lithium batteries. In contrast to pristine poly(ethylene oxide) solid polymer electrolyte, this solid polymer electrolyte exhibits higher ionic conductivity, wider electrochemical window, better mechanical strength, and superior rate performance at 20 °C. Moreover, lithium iron phosphate/lithium cell using such solid polymer electrolyte can charge and discharge even at 120 °C. It is also noted that the solid‐state soft‐package lithium cells assembled with this solid polymer electrolyte can still power a red light‐emitting diode lamp without suffering from internal short‐circuit failures even after cutting off one part of the battery. Considering the aspects mentioned above, the solid polymer electrolyte is eligible for practical lithium battery applications with improved reliability and safety. Just as important, a new perspective that the degree of amorphous state of polymer is also as critical as its low glass transition temperature for the exploration of room temperature solid polymer electrolyte is illustrated. In all, this study opens up a kind of new avenue that could be a milestone to the development of high‐voltage and ambient‐temperature all‐solid‐state polymer electrolytes.  相似文献   

3.
4.
5.
The charge generation and recombination dynamics in polymer/polymer blend solar cells composed of poly(3‐hexylthiophene) (P3HT, electron donor) and poly[2,7‐(9,9‐didodecylfluorene)‐alt‐5,5‐(4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothiadiazole)] (PF12TBT, electron acceptor) are studied by transient absorption measurements. In the unannealed blend film, charge carriers are efficiently generated from polymer excitons, but some of them recombine geminately. In the blend film annealed at 160 °C, on the other hand, the geminate recombination loss is suppressed and hence free carrier generation efficiency increases up to 74%. These findings suggest that P3HT and PF12TBT are intermixed within a few nanometers, resulting in impure PF12TBT and disordered P3HT domains. The geminate recombination is likely due to charge carriers generated on isolated polymer chains in the matrix of the other polymer and at the domain interface with disordered P3HT. The undesired charge loss by geminate recombination is reduced by both the purification of the PF12TBT‐rich domain and crystallization of the P3HT chains. These results show that efficient free carrier generation is not inherent to the polymer/fullerene domain interface, but is possible with polymer/polymer systems composed of crystalline donor and amorphous acceptor polymers, opening up a new potential method for the improvement of solar cell materials.  相似文献   

6.
7.
8.
A composite membrane based on electrospun poly(vinylidene fluoride) (PVDF) and lithium polyvinyl alcohol oxalate borate (LiPVAOB) exhibiting high safety (self‐extinguishing) and good mechanical property is prepared. The ionic conductivity of the as‐prepared gel polymer electrolyte from this composite membrane saturated with 1 mol L?1 LiPF6 electrolyte at ambient temperature can be up to 0.26 mS cm?1, higher than that of the corresponding well‐used commercial separator (Celgard 2730), 0.21 mS cm?1. Moreover, the lithium ion transference in the gel polymer electrolyte at room temperature is 0.58, twice as that in the commercial separator (0.27). Furthermore, the absorbed electrolyte solvent is difficult to evaporate at elevated temperature. Its electrochemical performance is evaluated by using LiFePO4 cathode. The obtained results suggest that this gel‐type composite membrane shows great possibilities for use in large‐capacity lithium ion batteries that require high safety.  相似文献   

9.
10.
11.
This paper reports on the photochemical behavior upon exposure to UV‐visible light of a poly(2,7‐carbazole) derivative for use in high‐performance solar cells. Poly[N‐9′‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) is one of a relatively large class of push‐pull carbazole‐based copolymers that have been synthesized to better harvest the solar spectrum. The 2,7‐carbazole building block of PCDTBT is also used with different electron‐accepting units in a large variety of low‐band‐gap polymers. The photochemical and morphological behavior of PCDTBT thin films is investigated from the molecular scale to the nanomechanical properties. The photo‐oxidation mechanism is shown to be governed by chain‐scission and cross‐linking reactions. It results in dramatic evolution of the morphology, roughness and stiffness of thin PCDTBT films. Based on the identification of several photoproducts formed along the macromolecular chains or released into the gas phase, the main pathways of PCDTBT photochemical evolution are discussed. These processes first involve the scission of the C–N bond between the carbazole group and the tertiary carbon atom bearing the alkyl side‐chain. Modifications of the chemical structure of PCDTBT, the evolution of its UV‐visible absorbance, and its nanomechanical properties initiated by light irradiation are shown to be closely related.  相似文献   

12.
This study demonstrates the effectiveness of using thin‐film electrolytes to enhance protonic ceramic fuel cells (PCFCs). The material tested in this study is yttrium‐doped barium cerate‐zirconate (BCZY), which is a representative electrolyte material of PCFCs. The thickness of the electrolyte membrane is as small as 1 µm and designed to minimize ohmic loss in proton transport pathways. Integration of this thin BCZY electrolyte is attempted on a multilayered anode comprised of two‐step supports with bulk nickel‐yttria stabilized zirconia cermet as a base and thin nickel‐BCZY as an anode functional layer atop the base. The compatibility of this support with the deposited thin electrolyte is able to be confirmed from the results of iterated tests. The power of the fabricated cell is greater than 1.1 W cm?2 at 600 °C, which is a record high for PCFCs and is reproducible. In this paper, the origin of this high power is discussed and improvements that could be made to cell performance are further suggested.  相似文献   

13.
14.
15.
Organic photovoltaics devices typically utilize illumination through a transparent substrate, such as glass or an optically clear plastic. Utilization of opaque substrates, including low cost foils, papers, and textiles, requires architectures that instead allow illumination through the top of the device. Here, we demonstrate top‐illuminated organic photovoltaics, employing a dry vapor‐printed poly(3,4‐ethylenedioxythiophene) (PEDOT) polymer anode deposited by oxidative chemical vapor deposition (oCVD) on top of a small‐molecule organic heterojunction based on vacuum‐evaporated tetraphenyldibenzoperiflanthene (DBP) and C60 heterojunctions. Application of a molybdenum trioxide (MoO3) buffer layer prior to oCVD deposition increases the device photocurrent nearly 10 times by preventing oxidation of the underlying photoactive DBP electron donor layer during the oCVD PEDOT deposition, and resulting in power conversion efficiencies of up to 2.8% for the top‐illuminated, ITO‐free devices, approximately 75% that of the conventional cell architecture with indium‐tin oxide (ITO) transparent anode (3.7%). Finally, we demonstrate the broad applicability of this architecture by fabricating devices on a variety of opaque surfaces, including common paper products with over 2.0% power conversion efficiency, the highest to date on such fiber‐based substrates.  相似文献   

16.
The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP‐ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear‐localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3‐1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col‐0 wild‐type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability.  相似文献   

17.
Copper (II) phthalocyanines (CuPcs) have attracted growing interest as promising hole‐transporting materials (HTMs) in perovskite solar cells (PSCs) due to their low‐cost and excellent stability. However, the most efficient PSCs using CuPc‐based HTMs reported thus far still rely on hygroscopic p‐type dopants, which notoriously deteriorate device stability. Herein, two new CuPc derivatives are designed, namely CuPc‐Bu and CuPc‐OBu, by molecular engineering of the non‐peripheral substituents of the Pc rings, and applied as dopant‐free HTMs in PSCs. Remarkably, a small structural change from butyl groups to butoxy groups in the substituents of the Pc rings significantly influences the molecular ordering and effectively improves the hole mobility and solar cell performance. As a consequence, PSCs based on dopant‐free CuPc‐OBu as HTMs deliver an impressive power conversion efficiency (PCE) of up to 17.6% under one sun illumination, which is considerably higher than that of devices with CuPc‐Bu (14.3%). Moreover, PSCs containing dopant‐free CuPc‐OBu HTMs show a markedly improved ambient stability when stored without encapsulation under ambient conditions with a relative humidity of 85% compared to devices containing doped Spiro‐OMeTAD. This work thus provides a fundamental strategy for the future design of cost‐effective and stable HTMs for PSCs and other optoelectronic devices.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号