首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
G-protein coupled receptors (GPCRs) play essential roles in signal transduction from the environment into the cell. While many structural features have been elucidated in great detail, a common functional mechanism on how the ligand-binding signal is converted into a conformational change on the cytoplasmic face resulting in subsequent activation of downstream effectors remain to be established. Based on available structural and functional data of the activation process in class-A GPCRs, we propose here that a change in protonation status, together with proton transfer via conserved structural elements located in the transmembrane region, are the key elements essential for signal transduction across the membrane.  相似文献   

4.
gamma-Carboxyglutamic acid (Gla) is believed to bind Ca [II] ions and Mg [II] ions in prothrombin and other coagulation proteins. Binding constants for H+, Ca [II] ions, and Mg [II] ions to Gla-containing peptides are determined using pH and ion selective electrode titrations. The binding constants for peptides containing a single Gla residue are similar to the constants for malonic acid. Peptides containing two Gla residues in sequence (di-Gla peptides) bind Ca [II] ions and Mg [II] ions more strongly. KMgL for the di-Gla peptides is similar to the site-binding constant for Ca [II] ions in denatured BF1. These di-Gla peptides may be useful analogs for metal binding by the disordered Gla domain in BF1.  相似文献   

5.
The viability of living systems requires that C--H bonds of biological molecules be stable in water, but that there also be a mechanism for shortening the timescale for their heterolytic cleavage through enzymatic catalysis of a variety of catabolic and metabolic reactions. An understanding of the mechanism of enzymatic catalysis of proton transfer at carbon requires the integration of results of studies to determine the structure of the enzyme-substrate complex with model studies on the mechanism for the non-enzymatic reaction in water, and the effect of the local protein environment on the stability of the transition state for this reaction. A common theme is the importance of electrostatic interactions in providing stabilization of bound carbanion intermediates of enzyme-catalyzed proton-transfer reactions.  相似文献   

6.
Jackson JB 《FEBS letters》2003,545(1):18-24
Transhydrogenase, in animal mitochondria and bacteria, couples hydride transfer between NADH and NADP(+) to proton translocation across a membrane. Within the protein, the redox reaction occurs at some distance from the proton translocation pathway and coupling is achieved through conformational changes. In an 'open' conformation of transhydrogenase, in which substrate nucleotides bind and product nucleotides dissociate, the dihydronicotinamide and nicotinamide rings are held apart to block hydride transfer; in an 'occluded' conformation, they are moved into apposition to permit the redox chemistry. In the two monomers of transhydrogenase, there is a reciprocating, out-of-phase alternation of these conformations during turnover.  相似文献   

7.
8.
9.
The dc conductivity of polycrystalline phosphatidylethanolamine (PE) was measured in the temperature range 60–120°C. Since no conclusive evidence had so far been obtained for the presence of proton conduction in this phospholipid, hydrogen gas was shown in the present experiment to evolve during the electrolysis in its premelted state between 91 and 124°C. In this temperature range molecules assume rotation around the molecular axes and proton conduction of the Grotthus type takes place possibly along two chains of intermolecular hydrogen bonds running in parallel. Zwitter-ions behave cooperatively as proton donors and acceptors in transferring proton from molecule to molecule via the hydrogen bond networks. This efficient push-pull way of proton transferring seems to account for the fact that no polarization was observed in the dc conduction experiments. The amount of evolved gas appears to be not exactly in accordance with Faraday's law and discussions are made on possible causes for this slight deviation.  相似文献   

10.
We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities.  相似文献   

11.
The current status of our knowledge about the mechanism of proton pumping by cytochrome oxidase is discussed. Significant progress has resulted from the study of site-directed mutants within the proton-conducting pathways of the bacterial oxidases. There appear to be two channels to facilitate proton translocation within the enzyme and they are important at different parts of the catalytic cycle. The use of hydrogen peroxide as an alternative substrate provides a very useful experimental tool to explore the enzymology of this system, and insights gained from this approach are described. Proton transfer is coupled to and appears to regulate the rate of electron transfer steps during turnover. It is proposed that the initial step in the reaction involves a proton transfer to the active site that is important to convert metal-ligated hydroxide to water, which can more rapidly dissociate from the metals and allow the reaction with dioxygen which, we propose, can bind the one-electron reduced heme-copper center. Coordinated movement of protons and electrons over both short and long distances within the enzyme appear to be important at different parts of the catalytic cycle. During the initial reduction of dioxygen, direct hydrogen transfer to form a tyrosyl radical at the active site seems likely. Subsequent steps can be effectively blocked by mutation of a residue at the surface of the protein, apparently preventing the entry of protons.  相似文献   

12.
The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons.  相似文献   

13.
14.
Dwyer TM  Rao KS  Goodman SI  Frerman FE 《Biochemistry》2000,39(37):11488-11499
Glutaryl-CoA dehydrogenase catalyzes the oxidation of glutaryl-CoA to crotonyl-CoA and CO(2) in the mitochondrial degradation of lysine, hydroxylysine, and tryptophan. We have characterized the human enzyme that was expressed in Escherichia coli. Anaerobic reduction of the enzyme with sodium dithionite or substrate yields no detectable semiquinone; however, like other acyl-CoA dehydrogenases, the human enzyme stabilizes an anionic semiquinone upon reduction of the complex between the enzyme and 2,3-enoyl-CoA product. The flavin potential of the free enzyme determined by the xanthine-xanthine oxidase method is -0.132 V at pH 7.0, slightly more negative than that of related flavoprotein dehydrogenases. A single equivalent of substrate reduces 26% of the dehydrogenase flavin, suggesting that the redox equilibrium on the enzyme between substrate and product and oxidized and reduced flavin is not as favorable as that observed with other acyl-CoA dehydrogenases. This equilibrium is, however, similar to that observed in isovaleryl-CoA dehydrogenase. Comparison of steady-state kinetic constants of glutaryl-CoA dehydrogenase with glutaryl-CoA and the alternative substrates, pentanoyl-CoA and hexanoyl-CoA, suggests that the gamma-carboxyl group of glutaryl-CoA stabilizes the enzyme-substrate complex by at least 5.7 kJ/mol, perhaps by interaction with Arg94 or Ser98. Glu370 is positioned to function as the catalytic base, and previous studies indicate that the conjugate acid of Glu370 also protonates the transient crotonyl-CoA anion following decarboxylation [Gomes, B., Fendrich, G. , and Abeles, R. H. (1981) Biochemistry 20, 3154-3160]. Glu370Asp and Glu370Gln mutants of glutaryl-CoA dehydrogenase exhibit 7% and 0. 04% residual activity, respectively, with human electron-transfer flavoprotein; these mutations do not grossly affect the flavin redox potentials of the mutant enzymes. The reduced catalytic activities of these mutants can be attributed to reduced extent and rate of substrate deprotonation based on experiments with the nonoxidizable substrate analogue, 3-thiaglutaryl-CoA, and kinetic experiments. Determination of these fundamental properties of the human enzyme will serve as the basis for future studies of the decarboxylation reaction which is unique among the acyl-CoA dehydrogenases.  相似文献   

15.
Proton Fluxes and the Activity of a Stelar Proton Pump in Onion Roots   总被引:6,自引:2,他引:4  
The xylem vessels of excised adventitious roots of onion, Alliumcepa, were perfused with unbuffered nutrient solution adjustedinitially to either pH 9·3 or 3·9; the pH of thesolution after passage through the xylem, at rates not lessthan 2 xylem volume changes min–1, was close to pH 6·5in both instances. The flux of H+ across the xylem/symplastboundary into mildly alkaline, phosphate-buffered solutionsperfusing the vessels could be increased greatly with increasingbuffer strength, up to a maximum value between 0·5–1·0pmol H+ mm–2 s–1. The apparent neutralization ofacidic malic acid buffers had a slightly lower maximum capacity,equivalent to –0·3 to –0·5 pmol H+mm–2 s–1. The addition of 5·0 pmol m–3fusicoccin (FC) to the xylem perfusion solution stimulated theentry of H+ into the xylem; in unbuffered perfusion solutionsthe pH fell to pH 3·6 after a lag of 25–35 min.FC additions to phosphate-buffered solutions also stimulatedthe H+ flux to an extent similar to that in unbuffered solution,viz. 0·2–0·4 pmol mm–2 s–1. The release of K+ (36Rb-labelled) into xylem sap transientlyincreased as the [K+] in weakly buffered perfusion solutionswas raised stepwise; a very marked increase being seen whenthe concentration was raised to 100 mol m–3 from 40 molm–3. The addition of 5·0 mmol m–3 FC to theperfusing solution containing 100 mol m–3 K+ rapidly decreasedthe K+ flux to the xylem as the H+ flux increased. Fusicoccinalso inhibited the flux of K+ into unbuffered perfusion solutionsbut the effect appeared reversible. Addition of 10 mmol m–3abscisic acid (ABA) to the perfusion solution quickly producedtransient increases in both K+ and H+ fluxes into the xylem.In this and other experiments using weakly phosphate-bufferedperfusing solutions, H+ fluxes were comparable in size to thoseof K+ The results are consistent with the idea that the stele of onionroots contains a proton trarislocating ATPase whose activityresponds to the pH of the xylem sap. It is evident that theactivity of the proton secreting and proton neutralizing mechanismsin the xylem parenchyma control the movement of other ions acrossthe xylem/symplast boundary. Key words: Xylem perfusion, fusicoccin, abscisic acid, pH gradient  相似文献   

16.
The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons.  相似文献   

17.
Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems.Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogenbonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.  相似文献   

18.
Complete proton NMR assignments have been made for a synthetic 18-amino acid peptide named systemin, which functions as a wound-induced polypeptide hormone in tomato plants, and three of its derivatives. The wild-type peptide and this synthetic homolog have equivalent activities in their functional roles as systemic inducing signals in tomato plants. Proton NMR studies were carried out to characterize the solution properties of systemin. A variety of homonuclear proton NMR experiments at both 500 and 600 MHz were utilized in making these assignments, which have resulted in additional structural information. Whereas these results provide no evidence for persistence of common secondary (helix, sheet) or tertiary structural elements in the systemin polypeptide, there is evidence for two distinct molecular conformations at the carboxy terminus.  相似文献   

19.
Biological membranes contain proton-binding moieties. A laser-induced proton pulse was used to characterize the proton-binding properties of bacterioopsin-containing membranes and of sarcoplasmic reticulum. Different protonation and deprotonation processes occurred. The liberation of protons from pyranine dye and the protonation of the membranes were independent of temperature; the reprotonation of pyranine and proton release from the membranes were temperature dependent. In the cases of membrane-free and membrane-containing systems, the activation enthalpies and entropies were calculated from the decay rates. The activation enthalpy of 16 kJ/mol for reprotonation of pyranine in membrane-free solution is characteristic for a diffusion-controlled process. The value for the membrane-containing systems was nearly double, suggesting that the buffering moieties of the membrane surfaces strongly bind the protons, raising the activation enthalpies. This is possibly an effect of the Coulomb cages formed from closely located proton acceptor sites. The activation entropies were positive in all cases.  相似文献   

20.
Proton pump of vacuolar system   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号