首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Adenosine A2A receptors are abundant in the caudate-putamen and involved in the motor control in several species. In MPTP-treated monkeys, A2A receptor-blockade with an antagonist alleviates parkinsonian symptoms without provoking dyskinesia, suggesting this receptor may offer a new target for the antisymptomatic therapy of Parkinson's disease. In the present study, a significant neuroprotective effect of A2A receptor antagonists is shown in experimental models of Parkinson's disease. Oral administration of A2A receptor antagonists protected against the loss of nigral dopaminergic neuronal cells induced by 6-hydroxydopamine in rats. A2A antagonists also prevented the functional loss of dopaminergic nerve terminals in the striatum and the ensuing gliosis caused by MPTP in mice. The neuroprotective property of A2A receptor antagonists may be exerted by altering the packaging of these neurotoxins into vesicles, thus reducing their effective intracellular concentration. We therefore conclude that the adenosine A2A receptor may provide a novel target for the long-term medication of Parkinson's disease, because blockade of this receptor exerts both acutely antisymptomatic and chronically neuroprotective activities.  相似文献   

2.
Chemical or electrical stimulation of the dorsal portion of the midbrain periaqueductal gray (dPAG) produces anxiogenic and antinociceptive effects. In rats, chemical stimulation of dPAG by local infusion of the neuropeptide corticotropin-releasing factor (CRF) provokes anxiogenic effects in the elevated plus-maze test (EPM). CRF also produces antinociception when injected intracerebroventricularly in rats, however it remains unclear whether this response is also observed following CRF injection into the dPAG in mice. Yet, given that there are CRF1 and CRF2 receptor subtypes within the PAG, it is important to show in which receptor subtypes CRF exert its anxiogenic and antinociceptive effects in the dPAG. Here, we investigated the role of these receptors in the anxiogenic (assessed in the EPM) and antinociceptive (assessed by the Formalin test: 2.5% formalin injection into the right hind paw) effects following intra-dPAG infusion of CRF in mice. The results show that intra-dPAG injections of CRF (75 pmol/0.1 μl and 150 pmol/0.2 μl) produced dose-dependent anxiogenic and antinociceptive effects. In addition, local infusion of NBI 27914 (5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6-(2,4,6-trichlorophenyl)-aminopyridine; 2 nmol/0.2 μl), a CRF1 receptor antagonist, completely blocked both the anxiogenic and antinociceptive effects induced by local infusion of CRF, while that of antisauvagine 30 (ASV30; 1 nmol/0.2 μl), a CRF2 receptor antagonist, did not alter the CRF effects. Present results are suggestive that CRF1 (but not CRF2) receptors play a crucial role in the anxiogenic and antinociceptive effects induced by CRF in the dPAG in mice.  相似文献   

3.
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinsons and Alzheimers disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different.  相似文献   

4.
Studies with multiple sclerosis patients and animal models of experimental autoimmune encephalomyelitis (EAE) implicate adenosine and adenosine receptors in modulation of neuroinflammation and brain injury. Although the involvement of the A(1) receptor has been recently demonstrated, the role of the adenosine A(2A) receptor (A(2A) R) in development of EAE pathology is largely unknown. Using mice with genetic inactivation of the A(2A) receptor, we provide direct evidence that loss of the A(2A) R exacerbates EAE pathology in mice. Compared with wild-type mice, A(2A) R knockout mice injected with myelin oligodendroglia glycoprotein peptide had a higher incidence of EAE and exhibited higher neurological deficit scores and greater decrease in body weight. A(2A) R knockout mice displayed increased inflammatory cell infiltration and enhanced microglial cell activation in cortex, brainstem, and spinal cord. In addition, demyelination and axonal damage in brainstem were exacerbated, levels of Th1 cytokines increased, and Th2 cytokines decreased. Collectively, these findings suggest that extracellular adenosine acting at A(2A) Rs triggers an important neuroprotective mechanism. Thus, the A(2A) receptor is a potential target for therapeutic approaches to multiple sclerosis.  相似文献   

5.
The metabotropic glutamate receptors 5 (mGlu5Rs) and the adenosine A2A receptors (A2ARs) have been reported to functionally interact in the striatum. The aim of the present work was to verify the hypothesis that the state of activation of A2A Rs could influence mGlu5R-mediated effects in the striatum. In electrophysiological experiments (extracellular recording in rat corticostriatal slices), the ability of the selective mGlu5R agonist CHPG to potentiate the reduction of the field potential amplitude induced by NMDA was prevented not only by the selective mGlu5R antagonist MPEP, but also by the selective A2AR antagonist ZM 241385. Analogously, the application of CHPG potentiated NMDA-induced toxicity (measured by LDH release) in cultured striatal neurons, an effect that was abolished by both MPEP and ZM 241385. Finally, the A2AR agonist CGS 21680 potentiated CHGP effects, an action that was reproduced and abolished, respectively, by forskolin (an activator of the cAMP/protein kinase A, PKA, pathway) and KT 5720 (a PKA inhibitor). The results indicate that A2ARs exert a permissive role on mGlu5R-induced effects in the striatum. Such an interaction may represent an additional target for the development of therapeutic strategies towards striatal disorders.  相似文献   

6.
The medial prefrontal cortex (mPFC) and the neuropeptide corticotropin-releasing factor (CRF) have recently been receiving more attention from those interested in the neurobiology of anxiety. Here, we investigated the CRF pathway in the modulation of anxiety-like behaviors in male mice exposed to the elevated plus-maze (EPM), through intra-mPFC injections of CRF, CP376395 [N-(1-ethylpropyl)-3,6-dimethyl-2-(2,4,6-trimethylphenoxy)-4-pyridinamine hydrochloride, a CRF type 1 receptor antagonist (CR F1)] or H-89 [N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride, a protein kinase (PKA) inhibitor]. We also investigated the effects of intra-mPFC injections of H-89 on the behavioral effects induced by CRF. Mice received bilateral intra-mPFC injections of CRF (0, 37.5, 75 or 150 pmol), CP376395 (0, 0.75, 1.5 or 3 nmol) or H-89 (0, 1.25, 2.5 or 5 nmol) and were exposed to the EPM, to record conventional and complementary measures of anxiety for 5 min. Results showed that while CRF (75 and 150 pmol) produced an anxiogenic-like effect, CP376395 (all doses) and H-89 (5 nmol) attenuated anxiety-like behavior. When injected before CRF (150 pmol), intra-mPFC H-89 (2.5 nmol, a dose devoid of intrinsic effects on anxiety) completely blocked the anxiogenic-like effects of CRF. These results suggest that (i) CRF plays a tonic anxiogenic-like role at CRF1 receptors within the mPFC, since their blockade per se attenuated anxiety indices and (ii) the anxiogenic-like effects following CRF1 receptor activation depend on cAMP/PKA cascade activation in this limbic forebrain area.  相似文献   

7.
Summary The presence and distribution of CRF-immunoreactive cells and nerve fibers were studied in the mammillary body of the rat, 12 days after placing various types of lesions within the hypothalamus. Anterior and anteriolateral cuts, placed in the midhypothalamus immediately behind the paraventricular nuclei resulted in an almost complete disappearance of CRF-immunoreactive fibers from the median eminence and simultaneous appearance of CRF-containing neurons in the mammillary body. Posterior or postero-lateral hypothalamic cuts carried out in front of the mammillary body caused the accumulation of CRF-immunoreactive material in neurons and neural processes located behind the cut-line. This type of intervention had no effect on the quantity of CRF fibers in the median eminence. A cut running through the central part of the mammillary body in the frontal plane resulted in appearance of CRF neurons only in the posterior half of the mammillary region. Placing a cut behind and over the mammillary body, CRF-immunoreactive neurons became detectable below the superior cut-line. No immunoreactive neurons were observed in the mammillary body when the frontal cut reached the base of the brain at the posterior border of the nucleus, leaving intact its anterior and superior connections. In all these cases when the mammillo-thalamic tract was transected, CRF neurons became detectable in the mammillary body.  相似文献   

8.
9.
Pregnant Wistar rats were orally treated with 1 g/L l -glutamate during the entire gestational period and the status of adenosine A1 receptor (A1R)/adenylyl cyclase transduction pathway from maternal and fetal brain was analyzed. Glutamate consumption, estimated from the loss of water from the drinking bottles, was 110 ± 4.6 mg/kg/day. In mother brains glutamate intake did not significantly alter the B max value, although the K d value was significantly decreased. However in fetus brain, a significant decrease in B max was observed, without an alteration of K d value. Similar results were observed by western blot assays using specific A1R antibody, suggesting a down-regulation of A1R in fetal brain. Concerning α subunits of inhibitory G proteins (Gi), αGi3 protein was slightly but significantly decreased in maternal brain without alterations of either Gi1 or Gi2. In contrast, αGi1 and αGi2 isoforms were increased in fetal brain. On the other hand, basal, forskolin, and forskolin plus GTPγS-stimulated adenylyl cyclase activity was significantly decreased in both maternal and fetal brain, and this was more prominent in fetal than in maternal brain. Finally, A1R functionality was significantly decreased in mother brain whereas no significant differences were detected in fetus brain. These results suggest that glutamate administered to pregnant rats modulates A1R signaling pathways in both tissues, showing an A1R down-regulation in fetal brain, and desensitization in maternal brain.  相似文献   

10.
11.
The pro‐inflammatory cytokine interleukin‐1β (IL‐1β), whose levels are elevated in the brain in Alzheimer's and other neurodegenerative diseases, has been shown to have both detrimental and beneficial effects on disease progression. In this article, we demonstrate that incubation of mouse primary cortical neurons (mPCNs) with IL‐1β increases the expression of the P2Y2 nucleotide receptor (P2Y2R) and that activation of the up‐regulated receptor with UTP, a relatively selective agonist of the P2Y2R, increases neurite outgrowth. Consistent with the accepted role of cofilin in the regulation of neurite extension, results indicate that incubation of IL‐1β‐treated mPCNs with UTP increases the phosphorylation of cofilin, a response absent in PCNs isolated from P2Y2R?/? mice. Other findings indicate that function‐blocking anti‐αvβ3/5 integrin antibodies prevent UTP‐induced cofilin activation in IL‐1β‐treated mPCNs, suggesting that established P2Y2R/αvβ3/5 interactions that promote G12‐dependent Rho activation lead to cofilin phosphorylation involved in neurite extension. Cofilin phosphorylation induced by UTP in IL‐1β‐treated mPCNs is also decreased by inhibitors of Ca2+/calmodulin‐dependent protein kinase II (CaMKII), suggesting a role for P2Y2R‐mediated and Gq‐dependent calcium mobilization in neurite outgrowth. Taken together, these studies indicate that up‐regulation of P2Y2Rs in mPCNs under pro‐inflammatory conditions can promote cofilin‐dependent neurite outgrowth, a neuroprotective response that may be a novel pharmacological target in the treatment of neurodegenerative diseases.  相似文献   

12.
Interaction between mGluR5 and NMDA receptors (NMDAR ) is vital for synaptic plasticity and cognition. We recently demonstrated that stimulation of mGluR5 enhances NMDAR responses in hippocampus by phosphorylating NR2B(Tyr1472) subunit, and this reaction was enabled by adenosine A2A receptors (A2AR) (J Neurochem, 135, 2015, 714). In this study, by using in vitro phosphorylation and western blot analysis in hippocampal slices of male Wistar rats, we show that mGluR5 stimulation or mGluR5/NMDAR s co‐stimulation synergistically activate ERK 1/2 signaling leading to c‐Fos expression. Interestingly, both reactions are under the permissive control of endogenous adenosine acting through A2ARs. Moreover, mGluR5‐mediated ERK 1/2 phosphorylation depends on NMDAR , which however exhibits a metabotropic way of function, since no ion influx through its ion channel is required. Furthermore, our results demonstrate that mGluR5 and mGluR5/NMDAR ‐evoked ERK 1/2 activation correlates well with the mGluR5/NMDAR ‐evoked NR2B(Tyr1472) phosphorylation, since both phenomena coincide temporally, are Src dependent, and are both enabled by A2ARs. This indicates a functional involvement of NR2B(Tyr1472) phosphorylation in the ERK 1/2 activation. Our biochemical results are supported by electrophysiological data showing that in CA 1 region of hippocampus, the theta burst stimulation (TBS)‐induced long‐term potentiation coincides temporally with an increase in ERK 1/2 activation and both phenomena are dependent on the tripartite A2A, mGlu5, and NMDAR s. Furthermore, we show that the dopamine D1 receptors evoked ERK 1/2 activation as well as the NR2B(Tyr1472) phosphorylation are also regulated by endogenous adenosine and A2ARs. In conclusion, our results highlight the A2ARs as a crucial regulator not only for NMDAR responses, but also for regulating ERK 1/2 signaling and its downstream pathways, leading to gene expression, synaptic plasticity, and memory consolidation.

  相似文献   

13.
14.
Active uptake by neurons and glial cells is the main mechanism for maintaining extracellular glutamate at low, non-toxic concentrations. Activation of adenosine A(2A) receptors increases extracellular glutamate levels, while A(2A) receptor antagonists reduce stimulated glutamate outflow. Whether a modulation of the glutamate uptake system is involved in the effects elicited by A(2A) receptor blockers has never been investigated. This study examined the ability of adenosine A(2A) receptor antagonists to prevent the increase in glutamate levels induced by blockade of the glutamate uptake. In rats implanted with a microdialysis probe in the dorsal striatum, perfusion with 4 mm l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC, a transportable competitive inhibitor of glutamate uptake), or 10 mm dihydrokainic acid (DHK, a non-transportable competitive inhibitor that mainly blocks the glial glutamate transporter GLT-1), significantly increased extracellular glutamate levels. The effects of PDC and DHK were completely prevented by the adenosine A(2A) receptor antagonists SCH 58261 (0.01 mg/kg i.p.) and/or ZM 241385 (5 nm via probe). Since an impairment in glutamate transporter function is thought to play a major role in neurodegenerative disorders, the regulation of glutamate uptake may be one of the mechanisms of the neuroprotective effects of A(2A) receptor antagonists.  相似文献   

15.
G protein‐coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) predominantly form A2AR‐D2R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2AR and D2R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain‐related differences, a new D2R‐deficient mouse with the same genetic background (CD‐1) than the A2AR knock‐out mouse was generated. Locomotor activity, pre‐pulse inhibition (PPI) and drug‐induced catalepsy were then evaluated in wild‐type, A2AR and D2R knock‐out mice, with and without the concomitant administration of either the D2R agonist sumanirole or the A2AR antagonist SCH442416. SCH442416‐mediated locomotor effects were demonstrated to be dependent on D2R signaling. Similarly, a significant dependence on A2AR signaling was observed for PPI and for haloperidol‐induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2AR‐D2R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.  相似文献   

16.
NMDA receptor‐mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain‐derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA‐induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild‐type mice and age‐matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild‐type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2AR blockade. The protective effect of BDNF against NMDA‐induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2AR ligands in HD.  相似文献   

17.
18.
19.
Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease‐activated receptor (PAR)‐1 and PAR‐2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin‐induced lung fibrosis is diminished in both PAR‐1 and PAR‐2 deficient mice. We thus have been suggested that combined inactivation of PAR‐1 and PAR‐2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR‐1 and PAR‐2 agonists in the absence or presence of specific PAR‐1 or PAR‐2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild‐type and PAR‐2 deficient mice with or without a specific PAR‐1 antagonist (P1pal‐12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR‐1 and/or PAR‐2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR‐1 and PAR‐2 did not show any additive effects on these pro‐fibrotic responses. Strikingly, PAR‐2 deficiency as well as pharmacological PAR‐1 inhibition reduced bleomycin‐induced pulmonary fibrosis to a similar extent. PAR‐1 inhibition in PAR‐2 deficient mice did not further diminish bleomycin‐induced pulmonary fibrosis. Finally, we show that the PAR‐1‐dependent pro‐fibrotic responses are inhibited by the PAR‐2 specific antagonist. Targeting PAR‐1 and PAR‐2 simultaneously is not superior to targeting either receptor alone in bleomycin‐induced pulmonary fibrosis. We postulate that the pro‐fibrotic effects of PAR‐1 require the presence of PAR‐2.  相似文献   

20.
NMDA receptor function is modulated by both G-protein-coupled receptors and receptor tyrosine kinases. In acutely isolated rat hippocampal neurons, direct activation of the platelet-derived growth factor (PDGF) receptor or transactivation of the PDGF receptor by D4 dopamine receptors inhibits NMDA-evoked currents in a phospholipase C (PLC)-dependent manner. We have investigated further the ability of D2-class dopamine receptors to modulate NMDA-evoked currents in isolated rat prefrontal cortex (PFC). We have demonstrated that, similar to isolated hippocampal neurons, the application of PDGF-BB or quinpirole to isolated PFC neurons induces a slow-onset and long-lasting inhibition of NMDA-evoked currents. However, in contrast to hippocampal neurons, the inhibition of NMDA-evoked currents by quinpirole in PFC neurons is dependent upon D2/3, rather than D4, dopamine receptors. In PFC slices, application of both PDGF-BB and quinpirole induced a phosphorylation of the PDGF receptor at the PLCgamma binding and activation site, Tyr1021. The PDGF receptor kinase inhibitor, tyrphostin A9, and the D2/3 dopamine receptor antagonist, raclopride, inhibited quinpirole-induced Tyr1021 phosphorylation. These finding suggest that quinpirole treatment inhibits NMDAR signaling via PDGF receptor transactivation in both the hippocampus and the PFC, and that the effects of quinpirole in these regions are mediated by D4 and D2/3 dopamine receptors, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号