首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
This review focuses on recent structural insights into regulation and nucleic acid binding of Superfamily 2 (SF2)-type helicases as they relate to chromatin remodelers. We review structural features of the Chd1 chromatin remodeler regarding regulation of the ATPase motor, and discuss related strategies observed for other SF2 ATPases. Since no SWI2/SNF2 ATPases have yet been captured bound to DNA in a state competent for ATP hydrolysis, we turn to structural examples from the DEAD-box RNA helicase family, and suggest that SWI2/SNF2-specific inserts may be poised to alter canonical duplex DNA structure.  相似文献   

6.
Dürr H  Körner C  Müller M  Hickmann V  Hopfner KP 《Cell》2005,121(3):363-373
SWI2/SNF2 ATPases remodel chromatin or other DNA:protein complexes by a poorly understood mechanism that involves ATP-dependent DNA translocation and generation of superhelical torsion. Crystal structures of a dsDNA-translocating SWI2/SNF2 ATPase core from Sulfolobus solfataricus reveal two helical SWI2/SNF2 specific subdomains, fused to a DExx box helicase-related ATPase core. Fully base paired duplex DNA binds along a central cleft via both minor groove strands, indicating that SWI2/SNF2 ATPases travel along the dsDNA minor groove without strand separation. A structural switch, linking DNA binding and the active site DExx motif, may account for the stimulation of ATPase activity by dsDNA. Our results suggest that torque in remodeling processes is generated by an ATP-driven screw motion of DNA along the active site cleft. The structures also redefine SWI2/SNF2 functional motifs and uncover unexpected structural correlation of mutations in Cockayne and X-linked mental retardation syndromes.  相似文献   

7.
8.
9.
ATP-dependent SWI/SNF chromatin remodeling complexes utilize ATP hydrolysis to non-covalently change nucleosome-DNA interactions and are essential in stem cell development, organogenesis, and tumorigenesis. Biochemical studies show that SWI/SNF in mammalian cells can be divided into two subcomplexes BAF and PBAF based on the subunit composition. ARID2 or BAF200 has been defined as an intrinsic subunit of PBAF complex. However, the function of BAF200 in vivo is not clear. To dissect the possible role of BAF200 in regulating embryogenesis and organ development, we generated BAF200 mutant mice and found they were embryonic lethal. BAF200 mutant embryos exhibited multiple cardiac defects including thin myocardium, ventricular septum defect, common atrioventricular valve, and double outlet right ventricle around E14.5. Moreover, we also detected reduced intramyocardial coronary arteries in BAF200 mutants, suggesting that BAF200 is required for proper migration and differentiation of subepicardial venous cells into arterial endothelial cells. Our work revealed that PBAF complex plays a critical role in heart morphogenesis and coronary artery angiogenesis.  相似文献   

10.
Collectively, genes encoding subunits of the SWI/SNF (BAF) chromatin remodeling complex are mutated in 20% of all human cancers, with the SMARCA4 (BRG1) subunit being one of the most frequently mutated. The SWI/SNF complex modulates chromatin remodeling through the activity of two mutually exclusive catalytic subunits, SMARCA4 and SMARCA2 (BRM). Here, we show that a SMARCA2-containing residual SWI/SNF complex underlies the oncogenic activity of SMARCA4 mutant cancers. We demonstrate that a residual SWI/SNF complex exists in SMARCA4 mutant cell lines and plays essential roles in cellular proliferation. Further, using data from loss-of-function screening of 165 cancer cell lines, we identify SMARCA2 as an essential gene in SMARCA4 mutant cancer cell lines. Mechanistically, we reveal that Smarca4 inactivation leads to greater incorporation of the nonessential SMARCA2 subunit into the SWI/SNF complex. Collectively, these results reveal a role for SMARCA2 in oncogenesis caused by SMARCA4 loss and identify the ATPase and bromodomain-containing SMARCA2 as a potential therapeutic target in these cancers.  相似文献   

11.
12.
ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation.  相似文献   

13.
The proteins belonging to SWI2/SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. We have identified a human gene with a putative DNA binding domain, which belongs to the INO80 subfamily of SWI2/SNF2 proteins. Here we report the cloning, expression, and functional activity of the domains from hINO80 gene both in terms of the DNA dependent ATPase as well as DNA binding activity. A differential expression of the various domains within this gene is detected in human tissues while a ubiquitous expression is detected in mice. The intranuclear localization is demonstrated using antibodies directed against the DBINO domain of hINO80.  相似文献   

14.
15.
种子及胚胎发育是被子植物个体发育的重要起始阶段,相关调控基因的阐明将有助于认识种子及胚胎发育的分子机制。预测同源基因CHR12和CHR23编码拟南芥依赖于ATP的染色质重塑核心组分—-月泉苷三磷酸酶。T-DNA插入缺失突变体鉴定、遗传杂交及转基因实验表明,两个基因同时缺失阻滞种子的正常发育;胚胎发育进程显微观察表明,与野生型及各自单缺失突变体相比,双重缺失突变体的胚胎发育停滞到了心形胚后期或鱼雷胚早期。这表明CHR12和CHR23在拟南芥种子及胚胎发育过程中功能冗余地发挥着重要调控作用。  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号