首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During germination the chestnut (Castanea sativa L.) var ecotype 33 accumulates a large amount of asparagine in the cotyledons. This compound also accumulates in the growing axis:shoots and roots. In the cotyledons, γ-aminobutyrate (GABA) represents a major amino compound during germination and early seedling growth. In young seedlings, 35 days old, arginine predominates over the other soluble amino acids, particularly in roots. Five enzymic activities involved in arginine and GABA have been measured in the storage organ of the seed: arginase and ornithine carbamyltransferase decrease during germination indicating the slowing down of the urea cycle. In contrast, ornithine aminotransferase increases. Glutamate decarboxylase is particularly active about 21 days after imbibition and GABA aminotransferase activity decreases during germination. These two activities are in good agreement with the likely transport of GABA from cotyledons to growing axis. Asparagine, arginine, and GABA are the three amino compounds obviously involved in the mobilization of nitrogen reserves in the germinating chestnut seeds Castanea sativa.  相似文献   

2.
The freshwater gastropod Lymnaea luteola infected with xiphidiocercariae of Prosthogonimus sp. showed striking changes in nitrogen excretion. Infected snails excreted significantly less total Kjeldahl nitrogen into the amibient medium. A significant drop in urea nitrogen alone accounted for this drop in total nitrogen excreted, as there was no change in ammonia excretion. While no significant change was seen in the activity of ornithine carbamyltransferase and arginosuccinate lyase in infected snails, arginase activity invariably dropped. The present study thus has revealed that it is not the urea production that occurs in the digestive gland that is affected upon infection, but it is arginolysis that occurs in other tissues, like foot and mantle, that is curtailed.  相似文献   

3.
O'neal TD 《Plant physiology》1975,55(6):975-977
An enzyme was extensively purified from jack bean leaves (Canavalia ensiformis L.) which produced o-ureidohomoserine from l-canaline and carbamyl phosphate. The most highly purified preparations catalyzed both this reaction and citrulline synthesis from ornithine and carbamyl phosphate, and the ratio of the two activities remained nearly constant during purification. When hydrated jack bean seeds were the enzyme source, ornithine carbamyltransferase (EC 2.1.3.3) activity was high but synthesis of ureidohomoserine was barely detectable. Both ornithine carbamyltransferase and the ureidohomoserine synthesizing enzyme had similar Km values for carbamyl phosphate. The purification data suggest that one enzyme may catalyze both reactions in jack bean leaves.  相似文献   

4.
5.
Arginine is the predominant free amino acid in the cotyledons of developing seeds of Pisum sativum L. cv Marzia. Breakdown of arginine was measured by injecting l-[guanido-14C]arginine into detached cotyledons. Cotyledons of developing seeds showed a low rate of 14CO2 evolution whereas a much higher rate of 14CO2 evolution was measured from cotyledons of seeds 4 days after the onset of germination. The activities of the catabolic enzymes arginase, urease, and ornithine aminotransferase were measured throughout development and germination. Arginase and ornithine aminotransferase were present at an early stage of development. Urease activity appeared later as the seeds started to desiccate. During germination, all three enzymes were present. The different course of activity of these enzymes indicates that they are controlled separately.  相似文献   

6.
Abstract

Changes in polyamine metabolism have been studied during early germination of Triticum durum Desf. cv. Cappelli. In the embryos of dry seeds, the adequate polyamine content decreases with a minimum at 36 h of water imbibition. A great need for polyamines during germination is expressed by reactivation of their biosynthetic enzymes. Putrescine biosynthesis mostly occurs via the ornithine–decar–boxylase pathway until 42 hours of hydration. Arginine–decarboxylase activity, almost absent in the first stages of imbibition, reaches its maximal level around 36–42 hours, when ornithine–decarboxylase falls. These changes suggest that the polyamine metabolism could be differently activated depending on the growth process related to the germination phases.  相似文献   

7.
The activity of ornithine decarboxylase (EC 4.1.1.17, L-ornithine carboxy-lyase) was determined during the life cycle of Blastocladiella emersonii. The specific activity of the enzyme was found to be low in the zoospores, to rise 20-fold during germination and early growth, to fall during growth and to rise again during sporulation. This rise in enzyme activity was shown to be dependent on protein synthesis. Putrescine levels, on a per mg of protein basis, paralleled the fluctuations found in ornithine decarboxylase activity. Putrescine and spermidine were the only polyamines found in extracts of B. emersonii.  相似文献   

8.
Lovatt et al. (1979 Plant Physiol 64: 562-569) have previously demonstrated that end-product inhibition functions as a mechanism regulating the activity of the orotic acid pathway in intact cells of roots excised from 2-day-old squash plants (Cucurbita pepo L. cv Early Prolific Straightneck). Uridine (0.5 millimolar final concentration) or one of its metabolites inhibited the incorporation of NaH14CO3, but not [14C]carbamylaspartate or [14C]orotic acid, into uridine nucleotides (ΣUMP). Thus, regulation of de novo pyrimidine biosynthesis was demonstrated to occur at one or both of the first two reactions of the orotic acid pathway, those catalyzed by carbamylphosphate synthetase (CPSase) and aspartate carbamyltransferase (ACTase). The results of the present study provide evidence that ACTase alone is the site of feedback control by added uridine or one of its metabolites. Evidence demonstrating regulation of the orotic acid pathway by end-product inhibition at ACTase, but not at CPSase, includes the following observations: (a) addition of uridine (0.5 millimolar final concentration) inhibited the incorporation of NaH14CO3 into ΣUMP by 80% but did not inhibit the incorporation of NaH14CO3 into arginine; (b) inhibition of the orotate pathway by added uridine was not reversed by supplying exogenous ornithine (5 millimolar final concentration), while the incorporation of NaH14CO3 into arginine was stimulated more than 15-fold when both uridine and ornithine were added; (c) incorporation of NaH14CO3 into arginine increased, with or without added ornithine when the de novo pyrimidine pathway was inhibited by added uridine; and (d) in assays employing cell-free extracts prepared from 2-day-old squash roots, the activity of ACTase, but not CPSase, was inhibited by added pyrimidine nucleotides.  相似文献   

9.
The control of ornithine decarboxylase activity by antizyme was studied during early germination of jute seeds(Corchorus olitorius). When 2 mM of putrescine and spermidine were applied to the germinating medium, the enzyme activity was markedly inhibited (1.7-fold) during 16 h imbibition. This inhibition could be attributed to the formation of an inhibitory protein termed antizyme. The antizyme was partially purified from jute and barley seedlings. The activity of jute ornithine decarboxylase antizyme was weaker than that of barley.  相似文献   

10.
11.
1. The activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and ornithine-2-oxoglutarate aminotransferase were studied during the first 24 h of conidial germination in Aspergillus nidulans. 2. Increases (over 100-fold) in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase occurred during the emergence of the germ-tube and before the doubling of DNA and this was followed by a sharp fall in the activities of both enzymes by 16h. 3. The increase in ornithine decarboxylase could be largely suppressed if 0.6 mM-putrescine was added to the growth medium. 4. Low concentrations of cycloheximide, which delayed germination by 2h, caused a corresponding delay in the changes in ornithine decarboxylase activity. 5. Ornithine-2-oxoglutarate aminotransferase activity increased steadily during the first 24h of germination. 6. Ornithine or arginine in the growth medium induced higher activity of ornithine-2-oxoglutarate aminotransferase, but did not affect ornithine decarboxylase activity. 7. The significance of these enzyme changes during germination is discussed.  相似文献   

12.
Agents such as dimethylsulfoxide, N,N′-dimethylformamide and bisacetyldiaminopentane that induce erythroid differentiation of Friend leukemia cells, cause a rapid increase in ornithine decarboxylase (EC 4.1.1.17) activity in intact cells during the ‘latent’ period preceding the accumulation of hemoglobin-containing cells. Blockage of erythroid differentiation with 5-bromo-2′-deoxyuridine did not prevent these alterations in enzyme activity. Addition of each chemical inducer in the extracts of these cells stimulate the basal levels of ornithine decarboxylase activity. These data indicate that the chemical inducers of differentiation modify the normal pattern of ornithine decarboxylase activity in this system.  相似文献   

13.
The gene ODC1, which codes for the ornithine decarboxylase enzyme, was isolated from the entomopathogenic fungus, Metarhizium anisopliae. The deduced amino acid sequence predicted a protein of 447 amino acids with a molecular weight of 49.3 kDa that contained the canonical motifs of ornithine decarboxylases. The ODC1 cDNA sequence was expressed in Escherichia coli cells; radiometric enzyme assays showed that the purified recombinant protein had ornithine decarboxylase activity. The optimum pH of the purified Odc1 protein was 8.0-8.5, and the optimum reaction temperature was 37 °C. The apparent Km for ornithine at a pyridoxal phosphate concentration of 20 mM was 22 μM. The competitive inhibitor of ODC activity, 1,4-diamino-2-butanone (DAB), at 0.25 mM inhibited 95% of ODC activity. The ODC1 mRNA showed an increase at the beginning of appressorium formation in vitro. During the M. anisopliae invasion process into Plutella xylostella larvae, the ODC1 mRNA showed a discrete increase within the germinating spore and during appressorium formation. The second expression peak was higher and prolonged during the invasion and death of the insect. The ODC1 gene complements the polyamine auxotrophy of Yarrowia lipolytica odc null mutant.  相似文献   

14.
Rat heart ornithine decarboxylase activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase had a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2? on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect oupon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rates to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

15.
Experimental studies were conducted for metabolomic profiling during seed germination and seedling development in Salicornia brachaita under saline conditions. The results revealed accumulation of sucrose, mannose, glycerol, methionine, tryptophan, glycerol, protocathechoic acid, and mannonic acid in germinating seeds. Abundance of rhamnose, glucose, glutamine, fructose, ornithine, quininic acid, proline and ketoglutaric acid were recorded during emergence of radical (EoR) and cotyledonary stage (CS) at 50% strength of seawater (SW) salinity. Higher levels of myo-inositol, ethanolamine, isoleucine and talose at 48 hours (hrs) of imbibition, EoR and CS stages; while glycine, tyrosine and turanose were so at CS stage only. Under 200 mM NaCl, richness of stearic acid, quercetin, leucine, erythritol and psicose were noted at 48 hrs of imbibition followed by EoR stage. Fructose, ornithine, mannitol, asparagine, mallic acid, glucose and citric acid were abundant at EoR whereas aminobutanoic acid, hexanedioic acid and tyramine were so at CS stage. Among detected metabolites maximum number of metabolites showed hits with amioacyl-tRNA biosynthesis pathway and the amino acid biosynthesis pathway had maximum impact during seedling development. Role of metabolic pathways (including amino acid metabolism) and differential expression of genes related to these pathways are suggested in meeting the energy needs for varied biological activities during seed germination and subsequent seedling development in S. brachiata.  相似文献   

16.
Ornithine decarboxylase activity in Euglena gracilis Z was studied during the normal cell cycle and in vitamin B-12 deficiency. The cells were synchronized by means of alternating periods of light and dark.During the normal cell cycle, ornithine decarboxylase activity was very weak in the dark period, while three peaks of activity were recognized in the light period. The first peak, in the G1 phase, occurred when luminous stimulation started; the second preceded the S phase and the third was found in G2. In B-12-deficient cells, ornithine decarboxylase activity was greatly decreased and only the first peak remained. Elimination of the deficiency by addition of vitamin B-12 to the medium induced a very fast and significant increase in ornithine decarboxylase activity.  相似文献   

17.
The properties of ornithine decarboxylase from Phycomyces blakesleeanus were examined. Enzyme from mycelial cultures was extracted and purified approximately 70-fold. The apparent molecular weight is 96K. The Michaelis constants with respect to ornithine and pyridoxal 5′-phosphate are 90 and 0.37 μm, respectively. Putrescine is a potent competitive inhibitor with a Ki of 75 μm. Exposure of ornithine decarboxylase to sulfhydryl-modifying reagents resulted in a rapid inhibition of activity. In vivo addition of putrescine produced characteristic decreases in cellular ornithine decarboxylase activity. Light stimulation of dark-adapted mycelial cultures also decreased cellular ornithine decarboxylase activity.  相似文献   

18.
The conidia of wild-type Neurospora crassa are shown to have a drastically lower activity for three enzymes of the isoleucine-valine pathway—acetohydroxy acid synthetase, dihydroxy acid dehydratase, and aminotransferase—than the actively growing mycelium. Lower activity was also found in the conidia for ornithine transcarbamylase and aspartate transcarbamylase. Lower activity (10- to 100-fold) was found for the overall synthesis of valine from pyruvate in the conidia as compared to the mycelium as expected.In addition it is also apparent that the distribution of the isoleucine-valine enzymes is different in conidia from the mycelium as regards activity in the mitochondria as compared to the cytosol. In conidia their activity in the mitochondria is lower than in the cytosol, but the opposite holds in the mycelium. These differences are also reflected in the overall activity.Cycloheximide inhibits the increase in total activity of the acetohydroxy acid synthetase and the dehydratase during germination of the conidia.  相似文献   

19.

Background

Tumorigenicity is an associated risk for transplantation of hepatocytes differentiated from human induced pluripotent stem (hiPS) cells. Hepatocytes express the enzymes galactokinase and ornithine transcarbamylase (OTC) to aid in their own survival. However, hiPS cells do not express these enzymes, and therefore, are not be expected to survive in a medium containing galactose and ornithine and lacking glucose and arginine.

Materials and Methods

Real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of galactokinase 1 (GALK1)1 and GALK2, ornithine carbamyltransferase, and phenylalanine hydroxylase (PAH). The hiPS cell line 201B7 was cultured in hepatocyte selection medium (HSM), which lacks glucose and arginine but contains galactose and ornithine. Furthermore, microscopic analysis of the cultured cells was performed after hematoxylin and eosin (H&E) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL). The hiPS cells were immunostained to assess their pluripotency in HSM. In addition, the primary human hepatocytes were cultured with or without hiPS cells in HSM.

Results

The expression levels of GALK1, GALK2, OTC, and PAH in 201B7 were 22.2±5.0 (average ± standard deviation), 14.2% ±1.1%, 1.2% ±0.2%, and 8.4% ±0.7% respectively, compared with those in the adult liver. The hiPS cell population diminished when cultured in HSM and completely disappeared after 3 days. The cultured cells showed condensation or fragmentation of their nuclei, thereby suggesting apoptosis. TUNEL staining confirmed that the cells had undergone apoptosis. The 201B7 cells were positive for Nanog, SSEA-4, and TRA-1-60. The primary human hepatocytes survived when cultured alone in HSM and when co-cultured with hiPS cells.

Conclusion

Therefore, HSM is and ideal medium for eliminating hiPS cells and purifying hepatocytes without inducing any damage.  相似文献   

20.
Effect of caffeine on ornithine metabolism in rat brain, liver and kidney   总被引:1,自引:0,他引:1  
Prolonged treatment with caffeine promotes in rats an increase of liver ornithine carbamyltransferase activity (14-day treatment). In contrast, arginase activity is already reduced in brain and kidney after 10 days, and in the liver much later (17 days). Ornithine transaminase activity was increased in both liver and kidney, while in the brain it was reduced (17 days). Ornithine decarboxylase activity showed only minor modifications in kidney, while it was unchanged in brain. Of the polyamines, only spermidine was significantly modified, being increased in brain, decreased in liver and kidney. Although these results do not explain the mechanism of the modification of brain arginine and ornithine concentration promoted by caffeine, they point to further marked effects, i.e. on OAT activity and on spermidine concentration, which could have a relevant metabolic role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号