首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co‐ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.  相似文献   

3.
4.
5.
6.
7.
8.
In aquatic environments, Vibrio cholerae colonizes mainly on the chitinous surface of copepods and utilizes chitin as the sole carbon and nitrogen source. Of the two extracellular chitinases essential for chitin utilization, the expression of chiA2 is maximally up-regulated in host intestine. Recent studies indicate that several bacterial chitinases may be involved in host pathogenesis. However, the role of V. cholerae chitinases in host infection is not yet known. In this study, we provide evidence to show that ChiA2 is important for V. cholerae survival in intestine as well as in pathogenesis. We demonstrate that ChiA2 de-glycosylates mucin and releases reducing sugars like GlcNAc and its oligomers. Deglycosylation of mucin corroborated with reduced uptake of alcian blue stain by ChiA2 treated mucin. Next, we show that V. cholerae could utilize mucin as a nutrient source. In comparison to the wild type strain, ΔchiA2 mutant was 60-fold less efficient in growth in mucin supplemented minimal media and was also ∼6-fold less competent to survive when grown in the presence of mucin-secreting human intestinal HT29 epithelial cells. Similar results were also obtained when the strains were infected in mice intestine. Infection with the ΔchiA2 mutant caused ∼50-fold less fluid accumulation in infant mice as well as in rabbit ileal loop compared to the wild type strain. To see if the difference in survival of the ΔchiA2 mutant and wild type V. cholerae was due to reduced adhesion of the mutant, we monitored binding of the strains on HT29 cells. The initial binding of the wild type and mutant strain was similar. Collectively these data suggest that ChiA2 secreted by V. cholerae in the intestine hydrolyzed intestinal mucin to release GlcNAc, and the released sugar is successfully utilized by V. cholerae for growth and survival in the host intestine.  相似文献   

9.
Uropathogenic Escherichia coli (UPEC) is a major pathogen that causes urinary tract infection (UTI), a common bacterial infectious disease. This bacterium invades the urinary tract cells, where it aggregates, and subsequently forms multicellular colonies termed intracellular bacterial communities (IBCs). The motility of the bacteria plays a key role in the mechanism of virulence in the host bladder. Here, we show that CytR is a modulator of bacterial internalization and aggregation within the bladder epithelial cells sustained by CRP in UPEC. Mutational analyses and gel-shift assays indicated that CytR represses the expression of flhD, thereby encoding a master regulator for flagellar expression that is responsible for bacterial motility when CRP is present, whereas CRP is an activator of flhD expression. Thus, elevated flagellar expression was involved in promoted virulence in the cytR mutant. These combined observations suggest another regulatory layer of flagellar expression and the role of CytR in UPEC virulence.  相似文献   

10.
Summary The synthesis of the four enzymes of the deo operon in Escherichia coli is known from in vivo experiments to be subject to a double negative control, exerted by the products of the cytR and deoR genes.A DNA-directed in vitro protein synthesizing system makes the deo enzymes (exemplified by thymidine phosphorylase) in agreement with in vivo results. Enzyme synthesis is stimulated by cyclic AMP and repressed by the cytR and deoR gene products. Repression by the cytR repressor is reversed by cytidine or adenosine in the presence of cyclic AMP, while repression by the deoR repressor is reversed by deoxyribose-5-phosphate.Assays for the presence of the cytR and deoR repressors were established by use of S-30 extracts prepared from the regulatory mutants.Dissociation constants for repressor-operator binding as well as for repressor-inducer interactions have been estimated from the results.Abbreviations and Symbols deoA (previously designated tpp) Genes coding for: thymidine, phosphorylase - deoB (previously designated drm) deoxyribomutase - deoC (previously designated dra) deoxyriboaldolase - deoD (previously designated pup) purine nucleoside phosphorylase - udp uridine phosphorylase - cytR regulatory gene for cdd, udp, deoC, deoA, deoB, and deoD - deoR (previously designated nucR) regulatory gene for deoC, deoA, deoB, and deoD Enzymes (EC 2.4.2.1) Purine nucleoside phosphorylase or purine nucleoside: orthophosphate(deoxy)ribosyltansferase - (EC 2.4.2.4) thymidine phosphorylase or thymidine: orthophosphate deoxyribosyltransferase - (EC 2.4.2.3) uridine phosphorylase or uridine: orthophosphate ribosyltransferase - (EC 4.1.2.4) deoxyriboaldolase or 2-deoxy-D-ribose-5-phosphate: acetaldehydelyase - (EC 2.7.5.6) phosphodeoxyribomutase The deo operon is defined as the gene cluster consisting of deoC deoA deoB deoD. The deo enzymes are the four enzymes encoded by the four genes of the deo operon. cAMP: cyclic adenosine 3,5-monophosphate. CRP: cyclic AMP receptor protein. dRib-5P: deoxyribose-5-phosphate. THUR: 3,4,5,6-tetrahydrouridine; EDTA: ethylene-diamine-tetra-acetate.  相似文献   

11.
12.
13.
The expression of chimeric receptors in plants is a way to activate specific signaling pathways by corresponding signal molecules. Defense signaling induced by chitin from pathogens and nodulation signaling of legumes induced by rhizobial Nod factors (NFs) depend on receptors with extracellular lysin motif (LysM) domains. Here, we constructed chimeras by replacing the ectodomain of chitin elicitor receptor kinase 1 (AtCERK1) of Arabidopsis thaliana with ectodomains of NF receptors of Lotus japonicus (LjNFR1 and LjNFR5). The hybrid constructs, named LjNFR1–AtCERK1 and LjNFR5–AtCERK1, were expressed in cerk1‐2, an A. thaliana CERK1 mutant lacking chitin‐induced defense signaling. When treated with NFs from Rhizobium sp. NGR234, cerk1‐2 expressing both chimeras accumulated reactive oxygen species, expressed chitin‐responsive defense genes and showed increased resistance to Fusarium oxysporum. In contrast, expression of a single chimera showed no effects. Likewise, the ectodomains of LjNFR1 and LjNFR5 were replaced by those of OsCERK1 (Oryza sativa chitin elicitor receptor kinase 1) and OsCEBiP (O. sativa chitin elicitor‐binding protein), respectively. The chimeras, named OsCERK1–LjNFR1 and OsCEBiP–LjNFR5, were expressed in L. japonicus NF receptor mutants (nfr1‐1; nfr5‐2) carrying a GUS (β‐glucuronidase) gene under the control of the NIN (nodule inception) promoter. Upon chitin treatment, GUS activation reflecting nodulation signaling was observed in the roots of NF receptor mutants expressing both chimeras, whereas a single construct was not sufficient for activation. Hence, replacement of ectodomains in LysM domain receptors provides a way to specifically trigger NF‐induced defense signaling in non‐legumes and chitin‐induced nodulation signaling in legumes.  相似文献   

14.
Chitin, a major component of fungal cell walls, is a well‐known pathogen‐associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM‐RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM‐RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin‐induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1‐1, ‐2, or ‐3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1‐1 and VvLYK1‐2, but not VvLYK1‐3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide‐induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1‐1 in Atcerk1 restored penetration resistance to the non‐adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1‐1 and VvLYK1‐2 participate in chitin‐ and chitosan‐triggered immunity and that VvLYK1‐1 plays an important role in basal resistance against E. necator.  相似文献   

15.

Background  

Pandemic Vibrio parahaemolyticus has undergone rapid changes in both K- and O-antigens, making detection of outbreaks more difficult. In order to understand these rapid changes, the genetic regions encoding these antigens must be examined. In Vibrio cholerae and Vibrio vulnificus, both O-antigen and capsular polysaccharides are encoded in a single region on the large chromosome; a similar arrangement in pandemic V. parahaemolyticus would help explain the rapid serotype changes. However, previous reports on "capsule" genes are controversial. Therefore, we set out to clarify and characterize these regions in pandemic V. parahaemolyticus O3:K6 by gene deletion using a chitin based transformation strategy.  相似文献   

16.
Bacteria of the genus Vibrio are common members of aquatic environments where they compete with other prokaryotes and defend themselves against grazing predators. A macromolecular protein complex called the type VI secretion system (T6SS) is used for both purposes. Previous research showed that the sole T6SS of the human pathogen V. cholerae is induced by extracellular (chitin) or intracellular (low c-di-GMP levels) cues and that these cues lead to distinctive signalling pathways for which the proteins TfoX and TfoY serve as master regulators. In this study, we tested whether the TfoX- and TfoY-mediated regulation of T6SS, concomitantly with natural competence or motility, was conserved in non-cholera Vibrio species, and if so, how these regulators affected the production of individual T6SSs in double-armed vibrios. We show that, alongside representative competence genes, TfoX regulates at least one T6SS in all tested Vibrio species. TfoY, on the other hand, fostered motility in all vibrios but had a more versatile T6SS response in that it did not foster T6SS-mediated killing in all tested vibrios. Collectively, our data provide evidence that the TfoX- and TfoY-mediated signalling pathways are mostly conserved in diverse Vibrio species and important for signal-specific T6SS induction.  相似文献   

17.
Vibrio cholerae is a natural inhabitant of aquatic ecosystems, yet its interactions within this habitat are poorly understood. Here we describe the current knowledge on the interaction of V. cholerae with one group of co‐inhabitants, the chironomids. Chironomids, non‐biting midges (Chironomidae, Diptera), are an abundant macroinvertebrate group encountered in freshwater aquatic habitats. As holometabolous insects, chironomids start life when their larvae hatch from eggs laid at the water/air interface; through various feeding strategies, the larvae grow and pupate to become short‐lived, non‐feeding, adult flying insects. The discovery of the connection between V. cholerae and chironomids was accidental. While working with Chironomus transavaalensis, we observed the disintegration of its egg masses and searched for a possible microbial agent. We identified V. cholerae as the primary cause of this phenomenon. Haemagglutinin/protease, a secreted extracellular enzyme, degraded the gelatinous matrix surrounding the eggs, enabling bacterial growth. Observation of chironomids in relation to V. cholerae continuously for 7 years in various types of water bodies in Israel, India, and Africa revealed that environmental V. cholerae adhere to egg‐mass surfaces of various Chironomini (‘bloodworms’). The flying adults' potential to serve as mechanical vectors of V. cholerae from one water body to another was established. This, in turn, suggested that these insects play a role in the ecology of V. cholerae and possibly take part in the dissemination of the pathogenic serogroups during, and especially between, epidemics.  相似文献   

18.
The rot gene in Escherichia coli encodes PPlase A, a periplasmic peptldyl-prolyl cis-trans isomerase with homology to the cyclophilin family of proteins. Here it is demonstrated that rot is expressed in a complex manner from four overlapping promoters and that the rot regulatory region is unusually compact, containing a close array of sites for DNA-binding proteins. The three most upstream rot promoters are activated by the global gene regulatory cAMP–CRP complex and negatively regulated by the CytR repressor protein. Activation of these three promoters occurs by binding of cAMP–CRP to two sites separated by 53 bp. Moreover, one of the cAMP–CRP complexes is involved in the activation of both a Class I and a Class II promoter. Repression takes place by the formation of a CytR/cAMP–CRP/DNA nucleoprotein complex consisting of the two cAMP–CRP molecules and CytR bound in between. The two regulators bind co-operatively to the DNA overlapping the three upstream promoters, simultaneously quenching the cAMP–CRP activator function. These results expand the CytR regulon to include a gene whose product has no known function in ribo- and deoxyribonucleoside catabolism or transport.  相似文献   

19.
Elimination of inoculated Vibrio cholerae (≥107 cells ml−1) within a brackish water bacteria assemblage (Mecoacán Lagoon, State of Tabasco, Mexico) was studied in laboratory microcosms with filtration‐fractionated water. Feeding of a ciliate, Cyclidium glaucoma was evaluated using fluorescently labelled V. cholerae o1. Even though V. cholerae was not exploited as the major food source, ciliates were able to eliminate it efficiently. An addition of chitin directly supported the growth of bacteria, although not so much of V. cholerae, and indirectly the growth of the protistan assemblage. Generally, the changes in a bacterial assemblage structure were the most important in V. cholerae elimination.  相似文献   

20.
Aims: Vibrio cholerae is an important bacterial pathogen that causes global cholera epidemic. Although they are commonly found in coastal waters around the world, most environmental isolates do not contain cholera toxin genes. This study investigates vibriophages in southern California coastal waters and their ability to transfer cholera toxin genes. Methods and Results: Lytic phages infecting V. cholerae were isolated from Newport Bay, California, between May and November, while none was found in winter. Some of the phage isolates can infect multiple environmental V. cholerae strains and El Tor strains. All phages contained double‐stranded DNA. Transduction experiments using kanamycin‐resistant gene marked CTXΦ demonstrated that some environmental vibriophages can transfer CTXΦ genes from O1 El Tor strain to environmental non‐O1/O139 V. cholerae via generalized transduction. Conclusions: Vibriophages are important components of the natural aquatic ecosystem. They play an important role in influencing the dynamics and evolution of V. cholerae in the environment. Significance and Impact of the Study: This study demonstrates the significance of vibriophages in the coastal environment and transduction as one of the mechanisms of pathogenicity evolution among environmental V. cholerae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号