首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tree carbohydrate reserves are usually compromised following insect outbreak, which results in a delay in leaf emergence and a reduction in growth, especially in cold environments. However, in recent times, severe defoliation of subarctic mountain birches (Betula pubescens ssp. czerepanovii) by the winter moth (Operophtera brumata) has not induced such responses. This may be the result of a warming climate stimulating plant primary metabolism. We examined if increasing thermal sum (sum of daily mean temperatures above +5 °C, d.d.) and complete foliage loss affected the concentrations of carbohydrates in sap, juvenile leaves, and fine roots of mountain birches in northern Finland and Norway. The sampling was conducted at the beginning of the growing season, two years after the insect outbreak. We also investigated the morphologic properties of mature leaves and the shoot growth of the trees. Our results showed that the carbohydrate concentrations in leaves and roots (averages 67.8 and 12.5 mg g?1 DW, respectively) decreased in defoliated trees with increasing thermal sum (>400 d.d.), whereas the response in intact trees was the opposite. The carbohydrates in the sap were unaffected by defoliation or thermal sum accumulation. The leaf area of mature leaves and the height growth of long shoots were greater in trees at warmer sites, irrespective of defoliation. However, defoliation increased the leaf weight per area (SLW: specific leaf weight). We conclude that under warmer growing conditions, low early-season leaf and fine root carbohydrate concentrations of previously defoliated trees cannot be used as indicators of aboveground growth.  相似文献   

2.
Ipomoea aquatica showed symptoms of stem necrosis when exposed to graded concentrations of copper (Cu) in 50 % Hoagland solution. The duration of exposure required to elicit necrotic response was concentration-dependent, where two stages, early necrosis (EN) and advanced necrosis (AN), could be visually distinguished. The apical parts of the exposed plant remained non-necrotic (NN). NN pieces placed in normal Hoagland 50 % solution could grow and produce new roots, nodes and leaves. Comparisons of protein, carbohydrate and copper concentrations among control (CN), EN, AN, NN and regrown and recovered (RC) stem tissues revealed that AN tissue had the lowest protein and carbohydrate concentrations, while NN had the highest. On the contrary, Cu concentration was higher in EN and AN than that in NN and CN. RC tissue had comparable protein, carbohydrate and Cu concentrations to those of CN. Thus I. aquatica could sequester excess Cu in necrotic tissue to keep the apical parts largely free from Cu toxicity. At the same time, more proteins and carbohydrates were synthesized in the apical part, which in turn enabled the plant to survive and grow, even when under Cu stress. This was further aided by the ability of its stem to produce adventitious roots from nodes and give off lateral shoots that bore flowers and leaves. This could be exploited for Cu phytoremediation by growing the plant in Cu-rich medium and then removing the Cu-enriched necrotic portions for safe disposal. The unaffected NN portions could be regrown and reused.  相似文献   

3.
Variations in the concentrations of chlorophyll a, ATP, protein, and carbohydrates in phytoplankton have been investigated in a nearshore upwelling region off the Cape Peninsula. During active upwelling temperatures <10 °C, high nutrient concentrations and low concentrations of the biochemical constituents were measured. When upwelling lessened and conditions stabilized temperatures increased and blooms of phytoplankton appeared. High concentrations of chlorophyll a and ATP and a high protein/carbohydrate ratio were then recorded. At very low nutrient levels chlorophyll a and ATP concentrations were still high but an increase in the acid-soluble carbohydrate content and a corresponding decrease in the protein/carbohydrate ratio was observe. It was concluded that the ratio of protein to carbohydrate was a suitable indicator of the physiological state of a phytoplankton community in the local upwelling region.  相似文献   

4.
Kermes oak (Quercus coccifera L.) is a sclerophyllous evergreen shrub of the Mediterranean region. In Greece, it grows either alone or in a mixture with other sclerophyllous species in shrublands or as the understory in Pinus brutia forest.The nutritive value and digestibility of kermes oak browse were investigated under 2 light conditions: an an understory species in a P. brutia forest and in adjacent open shrublands. The comparison was made at 3 phenological stages: during the season of rapid growth (in April), after rapid growth was terminated (in May) and when growth had ceased and stems had hardened (in June).Crude protein content of the leaves and twigs was higher in the shaded than in the unshaded plants during the growing season, while the concentrations of total non-structural carbohydrate, cell contents and soluble protein were higher in the unshaded than in the shaded plants. Tannins and lignin content were higher in shaded than in unshaded plants. Similarly, dry matter digestibility was higher in unshaded plants, but declined more drastically in the shaded plants during the growing season. Production was also higher in unshaded than in shaded plants at the end of the growing season.  相似文献   

5.
Cassava (Manihot esculenta, Crantz) is an important staple crop for tropical climates worldwide, including drought-prone environments where it is valued for its reliable yield. The extent to which stress tolerance involves regulation of growth and carbon balance aided by remobilization of carbohydrate from various plant parts was investigated. Plants were grown in 1-meter high pots to permit observation of deep rooting while they were subjected to four soil water regimes over a 30-d period. Transpiration declined abruptly in conjunction with leaf ABA accumulation and severe leaf abscission. In water stressed plants, growth of all plant parts decreased substantially; however, a basal rate of leaf growth continued to provide some new leaves, and although growth of fibrous lateral roots was reduced, main root elongation to deeper regions was only modestly decreased by stress. In leaf blades and petioles, sugars were the predominant form of nonstructural carbohydrate and about one third was in starch; these reserves were depleted rapidly during stress. In contrast, stems and storage roots maintained relatively high starch concentrations and contents per organ until final harvest. Stems gradually lost starch and had sufficient reserves to serve as a prolonged source of remobilized carbohydrate during stress. The amount of starch stored in stems represented about 35 % of the reserve carbohydrate in the plant at the onset of water stress (T0), and 6 % of total plant dry mass. We suggest that this pool of carbohydrate reserves is important in sustaining meristems, growing organs, and respiring organs during a prolonged stress and providing reserves for regrowth upon resumed rainfall.  相似文献   

6.
Two strains of Lactococcus lactis subsp. lactis were used to determine the influence of lactose and arginine on viability and amino acid use during carbohydrate starvation. Lactose provided energy for logarithmic-phase growth, and amino acids such as arginine provided energy after carbohydrate exhaustion. Survival time, cell numbers, and ATP concentrations increased with the addition of arginine to the basal medium. By the onset of lactose exhaustion, the concentrations of glycine-valine and glutamate had decreased by as much as 67% in L. lactis ML3, whereas the serine concentration increased by 97% during the same period. When no lactose was added, the concentrations of these amino acids remained constant. Similar trends were observed for L. lactis 11454. Without lactose or arginine, L. lactis ML3 was nonculturable on agar but was viable after 2 days, as measured by fluorescent viability stains and intracellular ATP levels. However, L. lactis 11454 without lactose or arginine remained culturable for at least 14 days. These data suggest that lactococci become viable but nonculturable in response to carbohydrate depletion. Additionally, these data indicate that amino acids other than arginine facilitate the survival of L. lactis during carbohydrate starvation.  相似文献   

7.
Pines responded to inoculation with Bursaphelenchus xylophilus by changes in reducing and nonreducing carbohydrate concentrations dependent on the pine species and the pathotype of B. xylophilus with which the trees were inoculated. Carbohydrate concentrations, in compatible pine-nematode pathotype combinations, decreased initially after inoculation and then increased slightly before decreasing to approximately 10% of the control levels as the seedlings wilted. In compatible nematode pathotype-pine species combinations, carbohydrate concentrations decreased and then increased as the nematode population densities declined.  相似文献   

8.
Investigations on phytoplankton communities in a nearshore region off the Cape Peninsula revealed three types of upwelled water. During active upwelling temperatures were < 10 °C and concentrations of inorganic nutrients were high (Type 1). Maturing upwelled water was characterized by temperatures > 10°C and nitrate concentrations varying between 2 and 15 μg-at. NO3-N · 1?1 (Type 2), while aged upwelled water (Type 3) contained low concentrations of nitrate (<2 μg-at. NO3-N · 1?1) at temperatures > 10°C. During the summer of 1978–1979 diatoms dominated the communities from October to January but microflagellates were dominant in February and March. In both types of community, low concentrations of ATP, chlorophyll a, protein and carbohydrate were measured in Type 1 water with protein/carbohydrate ratios being > 1. In Type 2 water concentrations of chlorophyll a, ATP and protein were high and the protein/carbohydrate ratio was > 1. Concentrations of chlorophyll a and ATP remained high in Type 3 water but the protein/carbohydrate ratio decreased to < 1 due to an increase in the concentration of acid-soluble glucan. It was concluded that the communities were in an active phase of growth in Type 1 and Type 2 water when adequate nutrients were available, but were in a slow-growing phase in Type 3 water when nitrate concentrations were low. Correlation coefficients, simple linear regressions and stepwise multiple regressions between biochemical and environmental variables confirmed that nitrate was the nutrient most closely related to the biochemical composition of phytoplankton. Using linear regression equations of biochemical variables on glucan it was estimated that chlorophyll a existed in a ratio of ≈ 1: 1 between living phytoplankton and bacteria/detritus, while the percentage of ATP was high in the phytoplankton component of Type 1 water but low in that of Type 2 water. The percentage of protein in detritus was greater than in living phytoplankton, and the carbohydrate content of living phytoplankton increased as the upwelled water matured from Type 1 and Type 2 to Type 3.  相似文献   

9.
Capacity of the fungi isolated from the surface of stone monuments for acid formation was studied in cultures under various carbon sources and cultivation conditions. The composition of organic nutrients was adjusted according to the results of investigation of the surface layers from the monuments in urban environment. The primary soil formed at the surface of the stone monuments under urban conditions was shown to contain a variety of carbon and nitrogen sources and is a rich substrate for fungal growth. Oxalic acid was produced by fungi grown on media with various concentrations of sugars, sugar alcohols, and organic acids. Malic, citric, fumaric, and succinic acids were identified only at elevated carbohydrate concentrations, mostly in liquid cultures. Oxalic acid was the dominant among the acids produced by Aspergillus niger at all experimental setups. Unlike A. niger, the relative content of oxalic acid produced by Penicillium citrinum decreased at high carbohydrate concentrations.  相似文献   

10.
Leaves are the main source of carbon for fruit maturation in most species. However, in plants seeing contrasting light conditions such as some spring plants, carbon fixed during the spring could be used to support fruit development in the summer, when photosynthetic rates are low. We monitored carbohydrate content in the rhizome (a perennating organ) and the aboveground stem of trillium (Trillium erectum) over the entire growing season (May–November). At the beginning of the fruiting stage, stems carrying a developing fruit were harvested, their leaves were removed, and the leafless stems were maintained in aqueous solution under controlled conditions up to full fruit maturation. These experiments showed that stem carbohydrate content was sufficient to support fruit development in the absence of leaves and rhizome. This is the first reported case, to our knowledge, of complete fruit development sustained only by a temporary carbohydrate reservoir. This carbohydrate accumulation in the stem during the spring enables the plant to make better use of the high irradiances occurring at that time. Many other species might establish short-term carbohydrate reservoirs in response to seasonal changes in growing conditions.  相似文献   

11.
The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration.  相似文献   

12.
Cyanobacterium Anabaena flos-aquae was cultivated in photobioreactors for production of intracellular gas vesicles (GVs), as potential oxygen microcarriers. Natural flotation of the buoyant culture was investigated as a potential means of cell harvesting, because filtration and centrifugation tended to destroy the vesicles. Best flotation was found with actively growing culture and when conducted in the dark. The flotation-related cell properties, including the specific GV content, vesicle-collapsed filament density, and intracellular carbohydrate content, were measured to understand the phenomena. During the batch culture, the specific GV content remained relatively constant at 370 microL/(g dry cells) but the filament density (ranging 1.02 to 1.08 g/cm3) showed a decrease-then-increase profile. The increase began when the growth slowed down because of the reduced light availability at high cell concentrations. The dark flotation was studied with both actively growing (mu approximately 0.2 day-1) and stationary-phase cultures. The specific GV content of the stationary-phase culture remained relatively constant while that of the growing culture increased slightly. The intracellular carbohydrate content of the growing culture decreased much faster and more significantly, from 57 to 10 mg/(g dry cells) in 相似文献   

13.
Winter air temperature variability is projected to increase in the temperate zone whereas snow cover is projected to decrease, leading to more variable soil temperatures. In a field experiment winter warming pulses were applied and aboveground biomass and root length of four plant species were quantified over two subsequent growing seasons in monocultures and mixtures of two species. The experiment was replicated at two sites, a colder upland site with more snow and a warmer, dryer lowland site. Aboveground biomass of Holcus lanatus declined (?29 %) in the growing season after the warming pulse treatment. Its competitor in the grassland mixture, Plantago lanceolata, profited from this decline by increased biomass production (+18 %). These effects disappeared in the second year. There was a strong decline in biomass for P. lanceolata at the lowland site in the second year. These two species also showed a decline in leaf carbohydrate content during the manipulation. Aboveground productivity and carbohydrate content of the heathland species was not affected by the treatment. The aboveground effects of the treatment did not differ significantly between the two sites, thereby implying some generality for different temperate ecosystems with little and significant amount of snowfall. Root length increased directly after the treatment for H. lanatus and for Calluna vulgaris with a peak at the end of the first growing season. The observed species-specific effects emphasize the ecological importance of winter temperature variability in the temperate zone and appear important for potential shifts in community composition and ecosystem productivity.  相似文献   

14.
Candida utilis was grown in batch culture with and without oxygen control. The concentrations of A-, B-, and C-type cytochromes were found to vary with the initial glucose concentration, with the dissolved oxygen concentration, and with time. A-type was the most sensitive. After glucose was essentially exhausted, the yeast catabolized ethanol, if it had been growing in a relatively low initial glucose concentration, or non-glucose carbohydrate, including some of that previously accumulated within the cell, if it had been growing in a high initial glucose concentration. This difference in metabolic pattern could explain why cytochrome derepression was initiated soon after glucose uptake ceased only if initial glucose had been relatively low. The effects of glucose and dissolved oxygen concentrations on yeast cytochromes and respiratory activity are discussed.  相似文献   

15.
《Insect Biochemistry》1987,17(6):777-781
Haemolymph concentrations of total carbohydrate and fatty acids were determined in velvetbean caterpillar (Anticarsia gemmatalis Hübner, Lepidoptera: Noctuidae) adult females throughout a 4-hr period of tethered flight. Total carbohydrate concentration decreased from approx. 30 to 10 μg/μl during the first 45 min of flight. Total fatty acid concentration increased from approx. 20 to 40 μg/μl during the first 60 min of flight and then declined to and stabilized at preflight levels. The decrease in wet weight (from approx. 97 to 80 mg/moth) during flight was probably due to defecation since no change in dry weight or haemolymph volume occurred. After 4 hr of flight, no apparent change in whole body lipid content (approx. 12 mg/moth) was observed but the much smaller carbohydrate content was reduced approx. 80% (from approx. 0.6 to 0.1 mg/moth). Approximately equal amounts (approx. 360–550 μg) of carbohydrate and lipid were removed from the haemolymph during 4 hr of flight. Changes in the haemolymph concentrations of palmitic, oleic and linoleic acids correspond to the changes in total fatty acid concentration of the haemolymph, indicating that these are the major components of the lipid mobilized and utilized during flight of A. gemmatalis.  相似文献   

16.
Patterns of disaccharidase expression were used to determine which polysaccharides were the major sources of carbohydrate for Bacteroides ovatus growing in the intestinal tracts of monocolonized germfree mice. Results indicate that B. ovatus grows on a variety of different carbohydrates, which are present in low concentrations, rather than relying on one type of carbohydrate as the major carbohydrate source.  相似文献   

17.
The cause for the growth reduction of a salt-tolerant varietyof barley (cv. ‘Beecher’) was investigated in plantsgrowth for 5 d at 120 mM and 180 mM NaCl. The NaCl treatmentsincreased the concentrations of soluble carbohydrate in theelongating tissues of the growing leaf, while starch did notchange. This shows that photosynthesis was not limiting growth,and indicates that the cause for the growth reduction was locatedin the growing leaves, specifically in the elongating tissue. Leaf elongation increased rapidly after transfer of plants from120 to 60 mM NaCl. The rate elongation during the first hourafter transfer was already equal to that of plants grown at60 mM NaCl, despite the persistence of high Cl and (Na++ K+) concentrations in elongating as well as fully elongatedtissues. This indicates that the growing tissues suffered fromwater deficit rather than from adverse effects of ions on metabolism.  相似文献   

18.
Patterns of disaccharidase expression were used to determine which polysaccharides were the major sources of carbohydrate for Bacteroides ovatus growing in the intestinal tracts of monocolonized germfree mice. Results indicate that B. ovatus grows on a variety of different carbohydrates, which are present in low concentrations, rather than relying on one type of carbohydrate as the major carbohydrate source.  相似文献   

19.
Growth of Spirulina sp. (MCRC-A0003), a cyanobacterium, was evaluated under different concentrations of carbon-dioxide (CO2) (4–50 %) in a closed glass photobioreactor. Although significant CO2 utilization by the cyanobacterial strain was observed up to 50 % concentration, complete utilization was observed only at 4, 10 and 20 % concentrations on 3rd, 6th and 8th day respectively. However, considerable reduction was witnessed in reactors containing 30–50 % CO2 only between 6th and 9th day. A corresponding increase in the biomass and primary metabolites like chlorophyll-a, carbohydrate and protein were observed. Biomass productivity of Spirulina in reactors sparged with 4, 10 and 20 % CO2 were 13.7, 43 and 44 % more than that in control reactor without CO2. While CO2 increased the levels of primary metabolites in the cyanobacterial cells, it was quite prominent in 10 % CO2 concentration with the chlorophyll-a, carbohydrate and protein contents were 64, 183 and 626 mg g?1 respectively. While 10 and 6.6 % increase were noticed in chlorophyll-a and protein, 17 % increase in carbohydrate levels was observed in Spirulina cells, which could be attributed to the conversion of CO2 to carbohydrate by the cyanobacterium.  相似文献   

20.
We investigated how the application of composted sewage sludge to tailings affects the physiological response of woody plants growing on abandoned coal-mining sites. Twenty seedlings ofBetula schmidtii were transplanted to pots containing various combinations of artificial soil plus nursery soil, tailings, composted soil, or tailings amended with composted soil. Dry weights, shoot to root ratios, relative growth rates (RGR), chlorophyll content and fluorescence, and carbohydrate concentrations were assessed at the end of the experiment. Growth responses differed significantly among soil types. For example, dry weights were greatest for seedlings grown in composted soil and smallest for plants raised in pure tailings. Shoot to root ratios were higher for seedlings in composted soil compared with those in either tailings or nursery soil. Leaf chlorophyll content was twice as high for seedlings from composted soil than for those in the nursery soil or tailings; chlorophyll fluorescence (Fv/Fm) was lower for seedlings in either nursery soil or tailings than for those in composted soil. In contrast, plants grown in either nursery soil or tailings had higher starch concentrations in their stems, whereas the carbohydrate allocation of seedlings in composted soil was highest in the leaves, followed by stems and roots. Overall, the carbohydrate content was highest in the leaves, except for seedlings treated with tailings. Therefore, we believe that composted soil can improve the physiological and biochemical properties of trees growing in tailings when appropriate nutrients are supplemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号