首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three glycosidic acids, turpethic acids A−C, and two intact resin glycosides, turpethosides A and B, all having a common pentasaccharide moiety and 12-hydroxy fatty acid aglycones of different chain lengths, were obtained from the aerial parts of Operculina turpethum. Their structures were elucidated by spectroscopic analyses and chemical correlations. The aglycones were characterized as 12-hydroxypentadecanoic acid in two compounds, 12-hydroxyhexadecanoic acid in two other components, and 12-hydroxyheptadecanoic acid in the fifth compound, which were all confirmed by synthesis. The absolute configurations of these aglycones were all established as S by Mosher’s method. These compounds represent the first examples of resin glycosides with a monohydroxylated 12-hydroxy fatty acid as an aglycone, and one compound is the first described resin glycoside having a hydroxylated C17 fatty acid as its aglycone.  相似文献   

2.
Flavonol aglycones are required for pollen germination in petunia (Petunia hybrida L.). Mutant plants lacking chalcone synthase (CHS), which catalyzes the first committed step in flavonoid synthesis, do not accumulate flavonols and are self-sterile. The mutant pollen can be induced to germinate by supplementing it with kaempferol, a flavonol aglycone, either at the time of pollination or by addition to an in vitro germination system. Biochemical complementation occurs naturally when the mutant, flavonol-deficient pollen is crossed to wild-type, flavonoid-producing stigmas. We found that successful pollination depends on stigma maturity, indicating that flavonol aglycone accumulation may be developmentally regulated. Quantitative immunoblotting, in vitro and in vivo pollen germination, and high-performance liquid chromatographic analyses of stigma and anther extracts were used to determine the relationship between CHS levels and flavonol aglycone accumulation in developing petunia flowers. Although substantial levels of CHS were measured, we detected no flavonol aglycones in wild-type stigma or anther extracts. Instead, the occurrence of a conjugated form (flavonol glycoside) suggests that a mechanism may operate to convert glycosides to the active aglycone form.  相似文献   

3.
Natural steroidal glycosides containing alpha-L-rhamnopyranosyl-(1-->4)-[alpha-L-rhamnopyranosyl-(1-->2)]-beta-D-glucopyranose (chacotriose) at the oligosaccharide moiety exhibit anti-cancer and anti-herpes activities. To investigate the structure-activity relationships of the aglycone parts of chacotriosides, we developed a synthesis method for chacotriosyl glycosides having various aglycones. In the process, it was revealed that alpha-chacotriosyl glycosides could be obtained mainly by using a trichloroacetimidate donor, while beta-chacotriosyl glycosides were afforded by using phosphite and phosphate donors. In cytotoxicity tests using the A549 and HepG2 cell lines, naturally occurring beta-chacotriosyl diosgenin and cholestanol exhibited higher activities than the corresponding alpha-chacotriosyl glycosides.  相似文献   

4.
The sugar moieties of many glycosylated small molecule natural products are essential for their biological activity. Glycosyltransferases (GTs) are enzymes responsible for installing these sugar moieties on a variety of biomolecules. Many GTs active on natural products are inherently substrate promiscuous and thus serve as useful tools in manipulating natural product glycosylation to generate new combinations of sugar units (glycones) and scaffold molecules (aglycones) in a process called glycodiversification. It is important to have an effective screening tool to detect the activity of promiscuous enzymes and their resulting glycoside products. Toward this aim, we developed a strategy for screening natural product GTs in a high-throughput fashion enabled by rapid isolation and detection of chromophoric or fluorescent glycosylated natural products. This involves a solvent extraction step to isolate the resulting polar glycoside product from the unreacted aglycone acceptor substrate and the detection of the formed glycoside by the innate absorbance or fluorescence of the aglycone moiety. Using our approach, we screened a collection of natural product GTs against a panel of precursors to therapeutically important molecules. Three GTs showed previously unreported promiscuity toward anthraquinones resulting in novel ε-rhodomycinone glycosides. Considering the pharmaceutical value of clinically used anthraquinone glycosides that are biosynthesized from an ε-rhodomycinone precursor, and the significance that the sugar moiety has on the biological activity of these drugs, our results are of particular importance toward the glycodiversification of therapeutics in this class. The GTs identified and the novel compounds they produce show promise toward new biocatalytic tools and therapeutics.  相似文献   

5.
Liquid chromatography with ultraviolet and mass spectrometric detection was applied to monitor changes in profiles of isoflavonoid glycosides and free isoflavonoid aglycones in Lupinus albus L. Four isoflavonoid aglycones, fourteen isoflavonoid glycosides, four flavonol glycosides and flavone glycoside were identified in lupin tissue after LC/ESI/MS analyses. An elicitor preparation from purified yeast cell wall was used to inject the shoots of 3-week old seedlings or to infiltrate the cut lupin leaves. Qualitative and quantitative changes of isoflavonoids were measured at different time points after elicitation. In elicited lupin seedlings increased amounts of prenylated isoflavone aglycones were identified. The concentrations of glycosidic conjugates of isoflavones present in plant tissue were less affected.  相似文献   

6.
A large number of antibiotics are glycosides. In numerous cases the glycosidic residues are crucial to their activity; sometimes, glycosylation only improves their pharmacokinetic parameters. Recent developments in molecular glycobiology have improved our understanding of aglycone vs. glycoside activities and made it possible to develop new, more active or more effective glycodrugs based on these findings – a very illustrative recent example is vancomycin. The majority of attention has been devoted to glycosidic antibiotics including their past, present, and probably future position in antimicrobial therapy. The role of the glycosidic residue in the biological activity of glycosidic antibiotics, and the attendant targeting and antibiotic selectivity mediated by glycone and aglycone in antibiotics some antitumor agents is discussed here in detail. Chemical and enzymatic modifications of aglycones in antibiotics, including their synthesis, are demonstrated on various examples, with particular emphasis on the role of specific and mutant glycosyltransferases and glycorandomization in the preparation of these compounds. The last section of this review describes and explains the interactions of the glycone moiety of the antibiotics with DNA and especially the design and structure–activity relationship of glycosidic antibiotics, including their classification based on their aglycone and glycosidic moiety. The new enzymatic methodology 'glycorandomization' enabled the preparation of glycoside libraries and opened up new ways to prepare optimized or entirely novel glycoside antibiotics.  相似文献   

7.
This paper briefly reviews the current state of understanding of cardiac excitation--contraction coupling and its relation to glycoside action. Evidence that inotropic action of glycosides might result from increased influx of Ca2+ during action potential is reviewed. Recent voltage clamp studies that show little if any direct effect on Ca2+ influx during the action potential are cited. It is suggested that the primary inotropic effects derive from altered ionic exchange mechanisms secondary to inhibition of Na+,K+-ATPase. The role of ionic currents in glycoside toxicity is considered, with discussion of a dynamic, depolarizing current that appears shortly after action potential. This current is apparently an inward movement of positive ions that is strongly mediated by extracellular Ca2+ levels. It is noted that such spontaneous depolarizations of the membrane have been observed in several other circumstances where strong positive inotropism has been induced. The conclusion is reached that membrane ionic currents probably play only a secondary role in glycoside inotropism and in many of the toxic effects.  相似文献   

8.
Using β-glucosidase to hydrolyze glycosides into aglycones, the present study attempted to improve the bio-activity of the extract from mulberry leaves. When varying the ethanol fraction, pH, and temperature of the extract, the optimum conditions for the enzyme reaction were identified as a 10% ethanol fraction in the extract, pH 5.0, and 40 °C temperature. Under these optimum conditions, the enzyme reaction produced a remarkable increase in the anti-oxidation and tyrosinase inhibition activities of the extract by as much as 219.5% and 230.9%, respectively. This improved bio-activity of the extract was due to the hydrolysis of the glycoside polyphenols rutin, isoquercitrin, and astragalin into the aglycone polyphenols quercetin and kaempferol. Furthermore, the enzymatic hydrolysis of the extract by β-glucosidase also produced some additional benefits that are critical factors for the skin absorption of bio-active ingredients, including an improved hydrophobicity (239.41%) and reduced mean molecular weight (from 387.3 to 291.4), resulting in a significantly enhanced skin permeability (513%).  相似文献   

9.
The metabolic modifications of birch (Betula pubescens Ehrh.) leaf phenolics in the digestive tract of its major defoliator, larvae of the autumnal moth Epirrita autumnata, were studied. The main phenolic acids of birch, i.e. chlorogenic and p-coumaroylquinic acids, were isomerised in the alkaline digestive tract. Moreover, only 16 to 92% of the ingested amounts of chlorogenic acid were found in the faeces of individual larvae; the missing portion is possibly being used in the formation of reactive o-quinones. Water-soluble flavonoid glycosides were mostly excreted unaltered. In contrast, lipophilic flavonoid aglycones were not excreted as such, but as glycosides after being detoxified by E. autumnata via glycosylation. When the larvae were fed with leaf-painted acacetin and kaempferide, i.e. two naturally occurring birch leaf flavonoid aglycones, acacetin-7-O-glucoside and kaempferide-3-O-glucoside appeared in larval faeces as major metabolites. However, the efficiency of aglycone glycosylation varied-, ranging from 17 to 33%, depending on the aglycone and its dietary level. There was also large variation in the efficiency of glycosylation--from 2 to 57%--among individual larvae. These results demonstrate a compound-specific metabolism of phenolic compounds, leading to different phenolic profiles in the insect gut compared to its leaf diet.  相似文献   

10.
Inhibitors of Na(+), K(+)-pump belonging to the class of cardiac glycosides were investigated in organotypic tissue culture of dorsal root ganglia cells of 10-12 days old chicken embryos. The data obtained show that the application of cardiac glycosides (strophantin K and digoxin) in a wide range of concentrations controls the neurite growth in sensory neurons in the dose-dependent manner. It was shown, that at the concentrations of cardiac glycoside exceeding 1 x 10(-6) M the growth of neurites was totally inhibited. Our data indicate that cardiac glycoside have the down-regulation effect on the neurite growth. The data obtained indicate that the Na(+), K(+)-ATPase is involved in the control of the process of neurite growth as a signal transducer.  相似文献   

11.
Two new asterosaponins, (20R)-3-O-beta-D-(2-O-methylxylopyranosyl)-24-propylcholest-4-ene-3 beta,6 beta, 8, 15 alpha, 16 beta, 29-hexaol (sanguinoside A) and (20R,24S)-3-O-beta-D-(2,3,4-tri-O-methylxylopyranosyl)-5 alpha-cholestane-3 beta, 4 beta, 6 beta, 8, 15 alpha, 24-hexaol (sanguinoside B), were isolated from two species of Pacific Far Eastern Starfish Henricia sanguinolenta and H. leviuscula leviuscula, collected in the Sea of Okhotsk. Both glycosides contain aglycones with pentahy-droxysteroid nuclei of similar structures, which are substituted at the 3-hydroxy group with differently methylated beta-D-xylosyl residues. Sanguinoside A has an unusual structure of its aglycone side chain, whereas sanguinoside B has a unique permethylated carbohydrate chain. In addition, laevisculoside G, a known glycoside, was identified in the H. leviuscula starfish. The structures of the isolated glycosides were established by interpreting their spectral data and by comparing their spectral characteristics with those of known compounds. The English version of the paper. Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 2; see also http://www.maik.ru.  相似文献   

12.
There are four isoforms of the α subunit (α1–4) and three isoforms of the β subunit (β1–3) of Na,K-ATPase, with distinct tissue-specific distribution and physiological functions. α2 is thought to play a key role in cardiac and smooth muscle contraction and be an important target of cardiac glycosides. An α2-selective cardiac glycoside could provide important insights into physiological and pharmacological properties of α2. The isoform selectivity of a large number of cardiac glycosides has been assessed utilizing α1β1, α2β1, and α3β1 isoforms of human Na,K-ATPase expressed in Pichia pastoris and the purified detergent-soluble isoform proteins. Binding affinities of the digitalis glycosides, digoxin, β-methyl digoxin, and digitoxin show moderate but highly significant selectivity (up to 4-fold) for α2/α3 over α1 (KD α1 > α2 = α3). By contrast, ouabain shows moderate selectivity (≈2.5-fold) for α1 over α2 (KD α1 ≤ α3 < α2). Binding affinities for the three isoforms of digoxigenin, digitoxigenin, and all other aglycones tested are indistinguishable (KD α1 = α3 = α2), showing that the sugar determines isoform selectivity. Selectivity patterns for inhibition of Na,K-ATPase activity of the purified isoform proteins are consistent with binding selectivities, modified somewhat by different affinities of K+ ions for antagonizing cardiac glycoside binding on the three isoforms. The mechanistic insight on the role of the sugars is strongly supported by a recent structure of Na,K-ATPase with bound ouabain, which implies that aglycones of cardiac glycosides cannot discriminate between isoforms. In conclusion, several digitalis glycosides, but not ouabain, are moderately α2-selective. This supports a major role of α2 in cardiac contraction and cardiotonic effects of digitalis glycosides.  相似文献   

13.
The thermostable β-glucosidase A (TmBglA) from Thermotoga maritima is a promising biocatalyst for production of isoflavone aglycones. Use of enzymes with high specificity for soy isoflavone conjugates is however essential for efficient hydrolysis. The effect of the amino acids located in the aglycone binding pocket with non-conserved residues between specificity groups in family 1 glycoside hydrolase (GH1) was studied using wild-type TmBglA and 3 exchange mutants (M1-TmBglA, M2-TmBglA, M1M2-TmBglA). Three mutants were expressed in Escherichia coli, purified and characterized. They had shifts in both optimum temperature and thermal stability, and their narrowing pH-activity curve caused by removing the ionized side chain in mutation. All mutants demonstrated the decreased catalytic efficiency more effectively revealed with natural glycoside, salicin, than with artificial substrate, p-nitrophenyl-β-D-glucopyranoside, suggesting that these amino acids are the key residues to determine aglycone specificity. A lower hydrolysis of genistin and daidzin for M2-TmBglA than M1-TmBglA indicated that L400, A407 and E408 being preferable to V170, A171, V173, G174 and H180 residues of Tm-BglA could be essential for soy isoflavone glycoside binding and catalysis.  相似文献   

14.
Johnston K  Sharp P  Clifford M  Morgan L 《FEBS letters》2005,579(7):1653-1657
The effect of different classes of dietary polyphenols on intestinal glucose uptake was investigated using polarised Caco-2 intestinal cells. Glucose uptake into cells under sodium-dependent conditions was inhibited by flavonoid glycosides and non-glycosylated polyphenols whereas aglycones and phenolic acids were without effect. Under sodium-free conditions, aglycones and non-glycosylated polyphenols inhibited glucose uptake whereas glycosides and phenolic acids were ineffective. These data suggest that aglycones inhibit facilitated glucose uptake whereas glycosides inhibit the active transport of glucose. The non-glycosylated dietary polyphenols appear to exert their effects via steric hindrance, and (-)-epigallochatechingallate, (-)-epichatechingallate and (-)-epigallochatechin are effective against both transporters.  相似文献   

15.
Pawar RS  Shukla YJ  Khan IA 《Steroids》2007,72(13):881-891
Ten new pregnane glycosides (1, 3-11) were isolated from organic extracts of aerial parts of Hoodia gordonii, which is sold as an appetite suppressant herbal supplement. The aglycone was identified as calogenin, based on the spectroscopic data of products obtained upon chemical and enzymatic degradation of parent glycoside. The structures of the glycosides were established by chemical degradation studies and extensive spectroscopic techniques that included one-dimensional and two-dimensional NMR.  相似文献   

16.
Steroidal saponins from the aerial parts of Tribulus pentandrus Forssk   总被引:1,自引:0,他引:1  
Seven new steroidal glycosides named pentandrosides A(1)-G(7) were isolated from the EtOH extract of the aerial parts of Tribulus pentandrus. Pentandrosides A(1)-E(5) possess cholestane aglycones, pentandroside F(6) a furostan-type aglycone and pentandroside G(7) an unusual acyloxypregnane aglycone probably derived from the degradation of a furostan skeleton. Structure elucidation of 1-7 was accomplished through the extensive use of 1D- and 2D NMR experiments including 1H-1H (DQF-COSY, 1D-TOCSY) and 1H-13C (HSQC, HMBC) spectroscopy along with ESIMS and HRESIMS.  相似文献   

17.
[目的]微生物β-葡萄糖苷酶法水解银杏黄酮苷具有重要意义,不过目前这方面的研究极少。因此,本文目的是筛选到水解银杏黄酮苷的酶活高的微生物β-葡萄糖苷酶,并分析其底物选择性机制。[方法]以银杏叶提取物作为唯一碳源富集培养,从贵州传统发酵豆豉中筛选产对银杏黄酮苷水解酶活高的β-葡萄糖苷酶的菌株,并对该菌株进行鉴定。然后比较此β-葡萄糖苷酶对不同底物的选择性,同时测定此酶水解银杏黄酮苷反应的米氏常数Km及最大反应速率Vmax。最后,对不同的底物进行分子对接,分析其底物特异性机制。[结果]结果表明,筛选到的菌株GUXN01所产β-葡萄糖苷酶水解银杏黄酮苷的酶活最高,被鉴定为枯草芽孢杆菌。此β-葡糖糖苷酶对β构型的糖类以及苷类等具有广泛的底物特异性和不同的选择性,尤其对银杏黄酮苷具有很好的亲和性。分子对接研究表明枯草芽孢杆菌β-葡萄糖苷酶对银杏黄酮苷和其他糖苷类具有不同亲和性和选择性的原因主要是酶结构和底物分子结构的相互作用力的差异导致的。[结论]这些发现为GUXN01所产的β-葡萄糖苷酶应用于水解银杏黄酮苷类生产相应苷元奠定了良好的基础。  相似文献   

18.
The compounds isolated from the extract of Central Asian lichen (Acarospora gobiensis H. Magn.) comprised three new glycosides having 18-hydroxy-dihydroalloprotolichesterinic, 18-hydroxy-neodihydroprotolichesterinic and 18-hydroxy-dihydroprotolichesterinic acids as aglycones and a di- or trisaccharide moiety linked at C-18 and at the carboxylic group. These compounds, called gobienines A-C, were found to be di- or trisacharides forming a macrolactone with the aglycone. The structures were elucidated by using extensive spectroscopic analysis (1D and 2D NMR, MS, IR and ORD) and chemical and enzymatic methods.  相似文献   

19.
β-Primeverosidase (PD) is a disaccharide-specific β-glycosidase in tea leaves. This enzyme is involved in aroma formation during the manufacturing process of oolong tea and black tea. PD hydrolyzes β-primeveroside (6-O-β-d-xylopyranosyl-β-d-glucopyranoside) at the β-glycosidic bond of primeverose to aglycone, and releases aromatic alcoholic volatiles of aglycones. PD only accepts primeverose as the glycone substrate, but broadly accepts various aglycones, including 2-phenylethanol, benzyl alcohol, linalool, and geraniol. We determined the crystal structure of PD complexes using highly specific disaccharide amidine inhibitors, N-β-primeverosylamidines, and revealed the architecture of the active site responsible for substrate specificity. We identified three subsites in the active site: subsite −2 specific for 6-O-β-d-xylopyranosyl, subsite −1 well conserved among β-glucosidases and specific for β-d-glucopyranosyl, and wide subsite +1 for hydrophobic aglycone. Glu-470, Ser-473, and Gln-477 act as the specific hydrogen bond donors for 6-O-β-d-xylopyranosyl in subsite −2. On the other hand, subsite +1 was a large hydrophobic cavity that accommodates various aromatic aglycones. Compared with aglycone-specific β-glucosidases of the glycoside hydrolase family 1, PD lacks the Trp crucial for aglycone recognition, and the resultant large cavity accepts aglycone and 6-O-β-d-xylopyranosyl together. PD recognizes the β-primeverosides in subsites −1 and −2 by hydrogen bonds, whereas the large subsite +1 loosely accommodates various aglycones. The glycone-specific activity of PD for broad aglycone substrates results in selective and multiple release of temporally stored alcoholic volatile aglycones of β-primeveroside.  相似文献   

20.
Ethacrynic acid (ECA), a sulfhydryl group inhibiting diuretic was examined for positive inotropic effects. These were found to be present in isolated guinea pig left atria studied in 0.9 and 1.8 mM Ca bathing solutions and were partially dependent upon adrenergic mechanisms (presumably secondary to norepinephrine release from sympathetic nerve endings) and partly independent of such mechanisms as demonstrated by propranolol induced beta-blockade and reserpine-induced catecholamine depletion. The mechanism of the non-beta adrenergic inotropism is unclear but may relate to the ability of ECA to inhibit the sarcolemmal Na-K-Mg-dependent ATPase. ECA-induced premature contractile failure occurred in all atria as well as a late increase in diastolic tension, the latter being comparable to that described for toxic doses of cardiac glycosides in similar preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号