首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Open‐circuit voltages of lead‐halide perovskite solar cells are improving rapidly and are approaching the thermodynamic limit. Since many different perovskite compositions with different bandgap energies are actively being investigated, it is not straightforward to compare the open‐circuit voltages between these devices as long as a consistent method of referencing is missing. For the purpose of comparing open‐circuit voltages and identifying outstanding values, it is imperative to use a unique, generally accepted way of calculating the thermodynamic limit, which is currently not the case. Here a meta‐analysis of methods to determine the bandgap and a radiative limit for open‐circuit voltage is presented. The differences between the methods are analyzed and an easily applicable approach based on the solar cell quantum efficiency as a general reference is proposed.  相似文献   

3.
The photoinduced open‐circuit voltage (Voc) loss commonly observed in bulk heterojunction organic solar cells made from amorphous polymers is investigated. It is observed that the total charge carrier density and, importantly, the recombination dynamics are unchanged by photoinduced burn‐in. Charge extraction is used to monitor changes in the density of states (DOS) during degradation of the solar cells, and a broadening over time is observed. It is proposed that the Voc losses observed during burn‐in are caused by a redistribution of charge carriers in a broader DOS. The temperature and light intensity dependence of the Voc losses can be described with an analytical model that contains the amount of disorder broadening in a Gaussian DOS as the only fit parameter. Finally, the Voc loss in solar cells made from amorphous and crystalline polymers is compared and an increased stability observed in crystalline polymer solar cells is investigated. It is found that solar cells made from crystalline materials have a considerably higher charge carrier density than those with amorphous materials. The effects of a DOS broadening upon aging are suppressed in solar cells with crystalline materials due to their higher carrier density, making crystalline materials more stable against Voc losses during burn‐in.  相似文献   

4.
The molecular chaperone, Hsc70, together with its co‐factor, auxilin, facilitates the ATP‐dependent removal of clathrin during clathrin‐mediated endocytosis in cells. We have used cryo‐electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401‐910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly .  相似文献   

5.
Controlling the internal microstructure and overall morphology of building blocks used to form hybrid materials is crucial for the realization of deterministically designed architectures with desirable properties. Here, integrative spray‐frozen (SF) assembly is demonstrated for forming hierarchically structured open‐porous microspheres (hpMSs) composed of Fe3O4 and reduced graphene oxide (rGO). The SF process drives the formation of a radially aligned microstructure within the sprayed colloidal droplets and also controls the overall microsphere morphology. The spherical Fe3O4/rGO hpMSs contain interconnected open pores, which, when used as a lithium‐ion battery anode, enables them to provide gravimetric and volumetric capacities of 1069.7 mAh g?1 and 686.7 mAh cm?3, much greater than those of samples with similar composition and different morphologies. The hpMSs have good rate and cycling performance, retaining 78.5% capacity from 100 to 1000 mA g?1 and 74.6% capacity over 300 cycles. Using in situ synchrotron X‐ray absorption spectroscopy, the reaction pathway and phase evolution of the hpMSs are monitored enabling observation of the very small domain size and highly disordered nature of FexOy. The reduced capacity fade relative to other conversion systems is due to the good electrical contact between the pulverized FexOy particles and rGO, the overall structural integrity of the hpMSs, and the interconnected open porosity.  相似文献   

6.
Despite the large body of literature on ape conservation, much of the data needed for evidence‐based conservation decision‐making is still not readily accessible and standardized, rendering cross‐site comparison difficult. To support knowledge synthesis and to complement the IUCN SSC Ape Populations, Environments and Surveys database, we created the A.P.E.S. Wiki ( https://apeswiki.eva.mpg.de ), an open‐access platform providing site‐level information on ape conservation status and context. The aim of this Wiki is to provide information and data about geographical ape locations, to curate information on individuals and organizations active in ape research and conservation, and to act as a tool to support collaboration between conservation practitioners, scientists, and other stakeholders. To illustrate the process and benefits of knowledge synthesis, we used the momentum of the update of the conservation action plan for western chimpanzees (Pan troglodytes verus) and began with this critically endangered taxon. First, we gathered information on 59 sites in West Africa from scientific publications, reports, and online sources. Information was compiled in a standardized format and can thus be summarized using a web scraping approach. We then asked experts working at those sites to review and complement the information (20 sites have been reviewed to date). We demonstrate the utility of the information available through the Wiki, for example, for studying species distribution. Importantly, as an open‐access platform and based on the well‐known wiki layout, the A.P.E.S. Wiki can contribute to direct and interactive information sharing and promote the efforts invested by the ape research and conservation community. The Section on Great Apes and the Section on Small Apes of the IUCN SSC Primate Specialist Group will guide and support the expansion of the platform to all small and great ape taxa. Similar collaborative efforts can contribute to extending knowledge synthesis to all nonhuman primate species.  相似文献   

7.
A new semiconducting polymer based on terthiophene‐thienopyrrolodione alternating building blocks with a deep HOMO energy level (5.66 eV) is presented. The polymer is prepared by a direct heteroarylation polycondensation reaction, which is a low‐cost and green alternative to the standard Stille coupling reaction and thus avoids any use of toxic stannyl derivatives. Integrating the polymer into bulk heterojunction solar cells with [6,6]‐phenyl C71‐butyric acid methyl ester ([70]PCBM) leads to a PCE of over 6% and a high open‐circuit voltage of up to 0.94 V. To obtain these results a unique processing additive, 1‐chloronaphthalene, is used, and a relatively low concentration of [70]PCBM is used in the blend solution.  相似文献   

8.
Large perturbation transient photovoltage and impedance spectroscopy measurements are used to gain insights into recombination in organic photovoltaic devices. The combination of these two simple optoelectronic techniques enables characterization of recombination order as well as mobile and trapped charge evolution over a large range of carrier densities. The data show that trapped charge is approximately equal to total charge at low carrier densities in the high efficiency devices measured. Between low and high charge carrier density, the order of recombination is observed to vary from monomolecular to bimolecular to higher order. The new techniques and methods presented can be applied to any type of photovoltage device to gain insight into device operation and limitations.  相似文献   

9.
10.
Localization‐based super‐resolution microscopy relies on the detection of individual molecules cycling between fluorescent and non‐fluorescent states. These transitions are commonly regulated by high‐intensity illumination, imposing constrains to imaging hardware and producing sample photodamage. Here, we propose single‐molecule self‐quenching as a mechanism to generate spontaneous photoswitching. To demonstrate this principle, we developed a new class of DNA‐based open‐source super‐resolution probes named super‐beacons, with photoswitching kinetics that can be tuned structurally, thermally and chemically. The potential of these probes for live‐cell compatible super‐resolution microscopy without high‐illumination or toxic imaging buffers is revealed by imaging interferon inducible transmembrane proteins (IFITMs) at sub‐100 nm resolutions.  相似文献   

11.
An open‐circuit voltage (Voc) of 1.57 V under simulated AM1.5 sunlight in planar MAPbBr3 solar cells with carbon (graphite) electrodes is obtained. The hole‐transport‐material‐free MAPbBr3 solar cells with the normal architecture (FTO/TiO2/MAPbBr3/carbon) show little hysteresis during current–voltage sweep under simulated AM1.5 sunlight. A solar‐to‐electricity power conversion efficiency of 8.70% is achieved with the champion device. Accordingly, it is proposed that the carbon electrodes are effective to extract photogenerated holes in MAPbBr3 solar cells, and the industry‐applicable carbon electrodes will not limit the performance of bromide‐based perovskite solar cells. Based on the analysis of the band alignment, it is found that the voltage (energy) loss across the interface between MAPbBr3 and carbon is very small compared to the offset between the valence band maximum of MAPbBr3 and the work function of graphite. This finding implies either Fermi level pinning or highly doped region inside MAPbBr3 layer exists. The band‐edge electroluminescence spectra of MAPbBr3 from the solar cells further support no back‐transfer pathways of electrons across the MAPbBr3/TiO2 interface.  相似文献   

12.
Quantum‐dot (QD) photovoltaics (PVs) offer promise as energy‐conversion devices; however, their open‐circuit‐voltage (VOC) deficit is excessively large. Previous work has identified factors related to the QD active layer that contribute to VOC loss, including sub‐bandgap trap states and polydispersity in QD films. This work focuses instead on layer interfaces, and reveals a critical source of VOC loss: electron leakage at the QD/hole‐transport layer (HTL) interface. Although large‐bandgap organic materials in HTL are potentially suited to minimizing leakage current, dipoles that form at an organic/metal interface impede control over optimal band alignments. To overcome the challenge, a bilayer HTL configuration, which consists of semiconducting alpha‐sexithiophene (α‐6T) and metallic poly(3,4‐ethylenedioxythiphene) polystyrene sulfonate (PEDOT:PSS), is introduced. The introduction of the PEDOT:PSS layer between α‐6T and Au electrode suppresses the formation of undesired interfacial dipoles and a Schottky barrier for holes, and the bilayer HTL provides a high electron barrier of 1.35 eV. Using bilayer HTLs enhances the VOC by 74 mV without compromising the JSC compared to conventional MoO3 control devices, leading to a best power conversion efficiency of 9.2% (>40% improvement relative to relevant controls). Wider applicability of the bilayer strategy is demonstrated by a similar structure based on shallow lowest‐unoccupied‐molecular‐orbital (LUMO) levels.  相似文献   

13.
Earth‐abundant Cu2BaSnS4 (CBTS) thin films exhibit a wide bandgap of 2.04–2.07 eV, a high absorption coefficient > 104 cm?1, and a p‐type conductivity, suitable as a top‐cell absorber in tandem solar cell devices. In this work, sputtered oxygenated CdS (CdS:O) buffer layers are demonstrated to create a good p–n diode with CBTS and enable high open‐circuit voltages of 0.9–1.1 V by minimizing interface recombination. The best power conversion efficiency of 2.03% is reached under AM 1.5G illumination based on the configuration of fluorine‐doped SnO2 (back contact)/CBTS/CdS:O/CdS/ZnO/aluminum‐doped ZnO (front contact).  相似文献   

14.
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.  相似文献   

15.
16.
17.
The origin of open‐circuit voltage (VOC) was studied for polymer solar cells based on a blend of poly(3‐hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of JV characteristics was analyzed by an equivalent circuit model. As a result, VOC increased with the decrease in the saturation current density J0 of the device. Furthermore, J0 was dependent on the activation energy EA for J0, which is related to the HOMO–LUMO energy gap between P3HT and fullerene. Interestingly, the pre‐exponential term J00 for J0 was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on VOC. This is probably because the recombination is non‐diffusion‐lmilited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of VOC is ascribed not only to the relative HOMO–LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene.  相似文献   

18.
Supercapacitors have emerged as an important energy storage technology offering rapid power delivery, fast charging, and long cycle lifetimes. While extending the operational voltage is improving the overall energy and power densities, progress remains hindered by a lack of stable n‐type redox‐active materials. Here, a new Faradaic electrode material comprised of a narrow bandgap donor?acceptor conjugated polymer is demonstrated, which exhibits an open‐shell ground state, intrinsic electrical conductivity, and enhanced charge delocalization in the reduced state. These attributes afford very stable anodes with a coulombic efficiency of 99.6% and that retain 90% capacitance after 2000 charge–discharge cycles, exceeding other n‐dopable organic materials. Redox cycling processes are monitored in situ by optoelectronic measurements to separate chemical versus physical degradation mechanisms. Asymmetric supercapacitors fabricated using this polymer with p‐type PEDOT:PSS operate within a 3 V potential window, with a best‐in‐class energy density of 30.4 Wh kg?1 at a 1 A g?1 discharge rate, a power density of 14.4 kW kg?1 at a 10 A g?1 discharge rate, and a long cycle life critical to energy storage and management. This work demonstrates the application of a new class of stable and tunable redox‐active material for sustainable energy technologies.  相似文献   

19.
Today's perovskite solar cells (PSCs) are limited mainly by their open‐circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity‐dependent measurements of the quasi‐Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin‐type PSCs with efficiencies above 20%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley‐Queisser theory. This has far‐reaching implications for the applicability of some well‐established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift‐diffusion simulations, the intensity dependence of the QFLS, the QFLS‐VOC offset and the ideality factor are consistently explained by trap‐assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS‐VOC relation is of great importance.  相似文献   

20.
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic?inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号