首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nanocomposites of selenium (Se) and ordered mesoporous silicon carbide‐derived carbon (OM‐SiC‐CDC) are prepared for the first time and studied as cathodes for lithium‐selenium (Li‐Se) batteries. The higher concentration of Li salt in the electrolytes greatly improves Se utilization and cell cycle stability. Se‐CDC shows significantly better performance characteristics than Se‐activated carbon nanocomposites with similar physical properties. Se‐CDC also exhibits better rate performance and cycle stability compared to similarly produced sulfur (S)–CDC for Li/S batteries.  相似文献   

3.
Highly porous carbide‐derived carbon (CDC) mesofoams (DUT‐70) are prepared by nanocasting of mesocellular silica foams with a polycarbosilane precursor. Ceramic conversion followed by silica removal and high‐temperature chlorine treatment yields CDCs with a hierarchical micro‐mesopore arrangement. This new type of polymer‐based CDC is characterized by specific surface areas as high as 2700 m2 g?1, coupled with ultrahigh micro‐ and mesopore volumes up to 2.6 cm3 g?1. The relationship between synthesis conditions and the properties of the resulting carbon materials is described in detail, allowing precise control of the properties of DUT‐70. Since the hierarchical pore system ensures both efficient mass transfer and high capacities, the novel CDC shows outstanding performance as an electrode material in electrochemical double‐layer capacitors (EDLCs) with specific capacities above 240 F g?1 when measured in a symmetrical two‐electrode configuration. Remarkable capacities of 175 F g?1 can be retained even at high current densities of 20 A g?1 as a result of the enhanced ion‐transport pathways provided by the cellular mesostructure. Moreover, DUT‐70 can be infiltrated with sulfur and host the active material in lithium–sulfur battery cathodes. Reversible capacities of 790 mAh g?1 are achieved at a current rate of C/10 after 100 cycles, which renders DUT‐70 an ideal support material for electrochemical energy‐storage applications.  相似文献   

4.
Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium‐carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium‐carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m2g?1), large pore volumes (1.24 cm3g?1), narrow mesopore‐size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg?1 in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore‐walls can increase the specific surface area to provide more sites for charge storage.  相似文献   

5.
6.
A metalorganic gaseous doping approach for constructing nitrogen‐doped carbon polyhedron catalysts embedded with single Fe atoms is reported. The resulting catalysts are characterized using scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray absorption spectroscopy; for the optimal sample, calculated densities of Fe–Nx sites and active N sites reach 1.75812 × 1013 and 1.93693 × 1014 sites cm‐2, respectively. Its oxygen reduction reaction half‐wave potential (0.864 V) is 50 mV higher than that of 20 wt% Pt/C catalyst in an alkaline medium and comparable to the latter (0.78 V vs 0.84 V) in an acidic medium, along with outstanding durability. More importantly, when used as a hydrogen–oxygen polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst with a catalyst loading as low as 1 mg cm‐2 (compared with a conventional loading of 4 mg cm‐2), it exhibits a current density of 1100 mA cm‐2 at 0.6 V and 637 mA cm‐2 at 0.7 V, with a power density of 775 mW cm‐2, or 0.775 kW g–1 of catalyst. In a hydrogen–air PEMFC, current density reaches 650 mA cm‐2 at 0.6 V and 350 mA cm‐2 at 0.7 V, and the maximum power density is 463 mW cm‐2, which makes it a promising candidate for cathode catalyst toward high‐performance PEMFCs.  相似文献   

7.
The capacitive performance of carbon materials could be enhanced by means of increasing the number of active sites, the surface area, and the porosity as well as through incorporating heteroatoms into the carbon framework. However, the charge storage through electric double‐layer mechanism results in limited increase in capacitance of modified carbon materials. Herein, a simple and straightforward strategy is introduced for in situ synthesizing iron complex (FeX, which X includes O, C, and P) nanoparticles encapsulated into biomass‐derived N, P‐codoped carbon nanotubes (NPCNTs), using a natural resource, egg yolk, as heteroatom‐enriched carbon sources and potassium ferricyanide as the precursor for iron complex. Compared with heteroatom‐enriched carbon nanomaterials derived from the carbonization of egg yolk, the synergetic function of the heteroatom doping, the incorporation of FeX nanoparticles, and the unique structural characteristics endows the as‐prepared sample with largely improved electrochemical performance. As expected, FeX@NPCNTs hybrid nanomaterials exhibit superior capacitive performance, including high specific capacitance, impressive rate performance, and excellent cycle stability. Using the as‐prepared FeX@NPCNTs hybrid nanomaterials as electroactive materials, a symmetric supercapacitor with high capacity and a long‐term cyclability is finally demonstrated (more than 99% capacitance retention after 50 000 cycles at a current density of 10 A g?1).  相似文献   

8.
Metallic lithium has long been deemed as the ultimate anode material for future high‐energy‐density Li batteries. However, the commercialization of Li metal anodes remains hindered by some major hurdles including their huge volume fluctuation during cycling, unstable solid electrolyte interface (SEI), and dendritic deposition. Herein, the concept of nano‐encapsulating electrode materials is attempted to tackle these problems. Nitrogen‐doped hollow porous carbon spheres (N‐HPCSs), prepared via a facile and low‐cost method, serve as the nanocapsules. Each N‐HPCS has a lithophilic carbon shell with a thin N‐rich denser layer on its inner surface, which enables preferential nucleation of Li inside the hollow sphere. It is demonstrated by in situ electron microscopy that these N‐HPCS hosts allow Li to be encapsulated in a highly reversible and repeatable manner. Ultralong Li filling/stripping cycling inside single N‐HPCSs is achieved, up to 50 cycles for the first time. Li ion transport across multiple connected N‐HPCSs, leading to long‐range Li deposition inside their cavities, is visualized. In comparison, other types of carbon spheres with modified shell structures fail in encapsulating Li and dendrite suppression. The necessity of the specific shell design is therefore confirmed for stable Li encapsulation, which is essential for the N‐HPCS‐based anodes to achieve superior cycling performance.  相似文献   

9.
Hierarchically porous nitrogen‐doped carbon (HPC)/polyaniline (PANI) nanowire arrays nanocomposites are synthesized by a facile in situ polymerization. 3D interconnected honeycomb‐like HPC was prepared by a cost‐effective route via one‐step carbonization using urea and alkali‐treated wheat flour as carbon precursor with a high specific surface area (1294 m2 g?1). The specific capacitances of HPC and HPC/PANI (with a surface area of 923 m2 g?1) electrode are 383 and 1080 F g?1 in 1 m H2SO4, respectively. Furthermore, an asymmetric supercapacitor based on HPC/PANI as positive electrode and HPC as negative electrode is successfully assembled with a voltage window of 0–1.8 V in 1 m Na2SO4 aqueous electrolyte, exhibiting high specific capacitance (134 F g?1), high energy density (60.3 Wh kg?1) and power density (18 kW kg?1), and excellent cycling stability (91.6% capacitance retention after 5000 cycles).  相似文献   

10.
11.
Pseudocapacitance is a Faradaic process that involves surface or near surface redox reactions. Increasing the pseudocapacitive contribution is one of the most effective means to improve the rate performance of electrode materials. In this study, graphene oxide is used as a template to in situ synthesize burr globule‐like FeSe2/graphene hybrid (B‐FeSe2/G) using a facile one‐step hydrothermal method. Structural characterization demonstrates that graphene layers not only wrap the surfaces of FeSe2 particles, but also stretch into the interior of these particles, as a result of which the unique nano‐microsphere structure is successfully established. When serving as anode material for Na‐ion batteries, B‐FeSe2/G hybrid displays high electrochemical performance in the voltage range of 0.5–2.9 V. The B‐FeSe2/G hybrid has high reversible capacity of 521.6 mAh·g?1 at 1.0 A g?1. Meanwhile, after 400 cycles, high discharge capacity of 496.3 mAh g?1 is obtained at a rate of 2.5 A g?1, with a high columbic efficiency of 96.6% and less than 1.0% loss of discharge capacity. Even at the ultrahigh rate of 10 A g?1, a specific capacity of 316.8 mAh g?1 can be achieved. Kinetic analyses reveal that the excellent performance of the B‐FeSe2/G hybrid is largely attributed to the high pseudocapacitive contribution induced by the special nano‐micro structure.  相似文献   

12.
Batteries with high energy and power densities along with long cycle life and acceptable safety at an affordable cost are critical for large‐scale applications such as electric vehicles and smart grids, but is challenging. Lithium–sulfur (Li‐S) batteries are attractive in this regard due to their high energy density and the abundance of sulfur, but several hurdles such as poor cycle life and inferior sulfur utilization need to be overcome for them to be commercially viable. Li–S cells with high capacity and long cycle life with a dual‐confined flexible cathode configuration by encapsulating sulfur in nitrogen‐doped double‐shelled hollow carbon spheres followed by graphene wrapping are presented here. Sulfur/polysulfides are effectively immobilized in the cathode through physical confinement by the hollow spheres with porous shells and graphene wrapping as well as chemical binding between heteronitrogen atoms and polysulfides. This rationally designed free‐standing nanostructured sulfur cathode provides a well‐built 3D carbon conductive network without requiring binders, enabling a high initial discharge capacity of 1360 mA h g?1 at a current rate of C/5, excellent rate capability of 600 mA h g?1 at 2 C rate, and sustainable cycling stability for 200 cycles with nearly 100% Coulombic efficiency, suggesting its great promise for advanced Li–S batteries.  相似文献   

13.
14.
Disordered carbons have captured extensive interest as anode materials for Na‐ion batteries (NIBs) due to the abundant resources, competitive specific capacity, and low cost. Here, a facile strategy of pre‐oxidation is successfully adopted to tune the microstructure of carbon anode to facilitate sodium storage. Pitch is selected as the low‐cost and high carbon yield precursor. An easy pre‐oxidation treatment in air can enable pitch to realize an effective structural conversion from ordered to disordered at further carbonization processes. Compared with the carbonized pristine pitch, the carbonized pre‐oxidation pitch increases the carbon yield from 54 to 67%, the sodium storage capacity from 94.0 to 300.6 mAh g?1, and the initial Coulombic efficiency from 64.2 to 88.6%. Experiment results reveal that the introduction of oxygen based functional groups is the key to achieve the highly disordered structure, not only ensuring the cross‐linkage during low‐temperature pre‐oxidation process but also suppressing the carbon structure from melting and rearranging in the high‐temperature carbonization process. Most importantly, this facile pre‐oxidation strategy can also be extended to other carbon precursors to facilitate the low‐cost and high‐performance disordered carbon anodes for NIBs and beyond.  相似文献   

15.
16.
Dual‐ion batteries (DIBs) attract great interest because they allow two types of ions for reversibly intercalating into electrodes, resulting in various advantages. However, there are three critical problems using graphite‐based cathodes, namely, low active material proportion in the electrodes, current collector corrosion, and massive cathode variation. For addressing these problems, an ultra‐lightweight 3D carbon current collector (CCC) is developed to fabricate all‐carbon electrodes as both cathodes and anodes. Compared with the conventional DIBs using Al and Cu foils as current collectors, the DIBs with 3D CCC of electrically conductive pathways and sufficient ionic diffusion channels deliver enhanced specific capacity stabilized around 140 and 120 mAh g?1 at 0.5 and 1C, respectively. The electrochemically inert 3D CCC could essentially promote the energy density when calculating the entire electrode mass, along with long‐life cycle stability of 1000 cycles at 5C and no electrochemical corrosion on either anodes or cathodes. With an in situ optical microscope, the cathode expansion is found to massively reduce because the porous 3D CCC could effectively alleviate the huge volume. The results suggest a novel strategy for achieving low‐cost and high energy density DIBs with both mechanically and electrochemically stable features.  相似文献   

17.
18.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

19.
Wearable textile energy storage systems are rapidly growing, but obtaining carbon fiber fabric electrodes with both high capacitances to provide a high energy density and mechanical strength to allow the material to be weaved or knitted into desired devices remains challenging. In this work, N/O‐enriched carbon cloth with a large surface area and the desired pore volume is fabricated. An electrochemical oxidation method is used to modify the surface chemistry through incorporation of electrochemical active functional groups to the carbon surface and to further increase the specific surface area and the pore volume of the carbon cloth. The resulting carbon cloth electrode presents excellent electrochemical properties, including ultrahigh areal capacitance with good rate ability and cycling stability. Furthermore, the fabricated symmetric supercapacitors with a 2 V stable voltage window deliver ultrahigh energy densities (6.8 mW h cm?3 for fiber‐shaped samples and 9.4 mW h cm?3 for fabric samples) and exhibit excellent flexibility. The fabric supercapacitors are further tested in a belt‐shaped device as a watchband to power an electronic watch for ≈9 h, in a heart‐shaped logo to supply power for ≈1 h and in a safety light that functions for ≈1 h, indicating various promising applications of these supercapacitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号