首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
California is a biodiversity hotspot facing unbridled human population growth, especially in Central California. One of the poorly known, sensitive species in this area is the California legless lizard (Anniella pulchra), a fossorial worm-like reptile. We report mt and nuDNA sequences from 69 museum-vouchered samples of Anniella (A. pulchra and its sister species A. geronimensis) from 48 localities. Our genetic survey reveals substantially more genetic diversity within A. pulchra than previously reported. Our two independently evolving markers (mt and nuDNA) reveal five major lineages of A. pulchra. Two of the five major lineages of A. pulchra correspond to a north-south split found in other widespread California reptiles. These northern and southern clades also correspond to a previous study showing variation in chromosomal number. Unlike most other Californian reptiles, A. pulchra has major genetic lineages that are endemic to Central California including two that are endemic to the San Joaquin Valley and Carrizo Plain. Although A. pulchra is threatened throughout its range, the distinct San Joaquin lineages are seriously imperiled by urban sprawl. Some of the localities for the newly recognized genetic lineages have already been destroyed by development.  相似文献   

2.
The contemporary distribution and genetic composition of biodiversity bear a signature of species’ evolutionary histories and the effects of past climatic oscillations. For many European species, the Mediterranean peninsulas of Iberia, Italy and the Balkans acted as glacial refugia and the source of range recolonization, and as a result, they contain disproportionately high levels of diversity. As these areas are particularly threatened by future climate change, it is important to understand how past climatic changes affected their biodiversity. We use an integrated approach, combining markers with different evolutionary rates and combining phylogenetic analysis with approximate Bayesian computation and species distribution modelling across temporal scales. We relate phylogeographic processes to patterns of genetic variation in Myotis escalerai, a bat species endemic to the Iberian Peninsula. We found a distinct population structure at the mitochondrial level with a strong geographic signature, indicating lineage divergence into separate glacial refugia within the Iberian refugium. However, microsatellite markers suggest higher levels of gene flow resulting in more limited structure at recent time frames. The evolutionary history of M. escalerai was shaped by the effects of climatic oscillations and changes in forest cover and composition, while its future is threatened by climatically induced range contractions and the role of ecological barriers due to competition interactions in restricting its distribution. This study warns that Mediterranean peninsulas, which provided refuge for European biodiversity during past glaciation events, may become a trap for limited dispersal and ecologically limited endemic species under future climate change, resulting in loss of entire lineages.  相似文献   

3.
Population genetics of the tree‐colonizing lichen Lobaria pulmonaria were studied in the largest primeval beech forest of Europe, covering 10 000 ha. During an intensive survey of the area, we collected 1522 thallus fragments originating from 483 trees, which were genotyped with eight mycobiont‐ and 14 photobiont‐specific microsatellite markers. The mycobiont and photobiont of L. pulmonaria were found to consist of two distinct gene pools, which are co‐existing within small areas of 3–180 ha in a homogeneous beech forest. The small‐scale distribution pattern of the symbiotic gene pools show habitat partitioning of lineages associated with either floodplains or mountain forests. Using approximate Bayesian computation (ABC), we dated the divergence of the two fungal gene pools of L. pulmonaria as the Early Pleistocene. Both fungal gene pools survived the Pleistocene glacial cycles in the Carpathians, although possibly in climatically different refugia. Fungal diversification prior to these cycles and the selection of photobionts with different altitudinal distributions explain the current sympatric, but ecologically differentiated habitat partitioning of L. pulmonaria. In addition, the habitat preferences of the mycobiont are determined by other factors and are rather independent of those of the photobiont at the landscape level. The distinct gene pools should be considered evolutionarily significant units and deserve specific conservation priorities in the future, for example gene pool A, which is a Pliocene relict.  相似文献   

4.
Understanding the demographic history and genetic make‐up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970s. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the Late Pleistocene or Early Holocene through a single event of introduction; however, we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus.  相似文献   

5.
Rapid adaptation can prevent extinction when populations are exposed to extremely marginal or stressful environments. Factors that affect the likelihood of evolutionary rescue from extinction have been identified, but much less is known about the evolutionary dynamics (e.g., rates and patterns of allele frequency change) and genomic basis of successful rescue, particularly in multicellular organisms. We conducted an evolve‐and‐resequence experiment to investigate the dynamics of evolutionary rescue at the genetic level in the cowpea seed beetle, Callosobruchus maculatus, when it is experimentally shifted to a stressful host plant, lentil. Low survival (~1%) at the onset of the experiment caused population decline. But adaptive evolution quickly rescued the population, with survival rates climbing to 69% by the F5 generation and 90% by the F10 generation. Population genomic data showed that rescue likely was caused by rapid evolutionary change at multiple loci, with many alleles fixing or nearly fixing within five generations of selection on lentil. Selection on these loci was only moderately consistent in time, but parallel evolutionary changes were evident in sublines formed after the lentil line had passed through a bottleneck. By comparing estimates of selection and genomic change on lentil across five independent C. maculatus lines (the new lentil‐adapted line, three long‐established lines and one case of failed evolutionary rescue), we found that adaptation on lentil occurred via somewhat idiosyncratic evolutionary changes. Overall, our results suggest that evolutionary rescue in this system can be caused by very strong selection on multiple loci driving rapid and pronounced genomic change.  相似文献   

6.
Both paleoclimatic change and anthropogenic habitat destruction can have adverse effects on species demography and, in turn, could lead a species towards being endangered and rare. Understanding the relative importance of these natural and anthropogenic factors driving species endangerment and rarity is thus crucial for effective conservation planning but remains elusive. Here, we examine the phylogeography and demographic history of an endangered conifer species in China, Torreya jackii Chun, and assess the relative importance of natural and anthropogenic factors that might have put the species in its endangered state. We collected tissue samples from all the 13 extant wild populations, and analyzed the genetic variation using eight nuclear microsatellites and four chloroplast and one mitochondrial DNA fragments. We found low genetic and nucleotide diversities, which could explain the absence of spatial and phylogeographic structure. Using a hierarchical approximate Bayesian computation technique, we identified the demographic scenario that best fits the genetic data and found that effective population size was low at least 200 000 years ago but expanded after the last glacial maximum (LGM). The paleoclimatic niche model revealed a profound effect of precipitation on the distribution of T. jackii and predicted that the current distribution areas were suitable during the LGM. Despite the post-LGM expansion, the best-supported scenario showed a dramatic population collapse during the past 300 years, when anthropogenic disturbances also increased dramatically. Overall, our study sheds light on how historical factors and human impacts jointly threaten the persistence of a species, and these aspects should be duly considered in species conservation planning.  相似文献   

7.
Protected areas (PAs) are essential for biodiversity conservation, but their coverage is considered inefficient for the preservation of all species. Many species are subdivided into evolutionarily significant units (ESUs) and the effectiveness of PAs in protecting them needs to be investigated. We evaluated the usefulness of the Brazilian PAs network in protecting ESUs of the critically endangered Pithecopus ayeaye through ongoing climate change. This species occurs in a threatened mountaintop ecosystem known as campos rupestres. We used multilocus DNA sequences to delimit geographic clusters, which were further validated as ESUs with a coalescent approach. Ecological niche modeling was used to estimate spatial changes in ESUs’ potential distributions, and a gap analysis was carried out to evaluate the effectiveness of the Brazilian PAs network to protect P. ayeaye in the face of climate changes. We tested the niche overlap between ESUs to gain insights for potential management alternatives for the species. Pithecopus ayeaye contains at least three ESUs isolated in distinct mountain regions, and one of them is not protected by any PA. There are no climatic niche differences between the units, and only 4% of the suitable potential area of the species is protected in present and future projections. The current PAs are not effective in preserving the intraspecific diversity of P. ayeaye in its present and future range distributions. The genetic structure of P. ayeaye could represent a typical pattern in campos rupestres endemics, which should be considered for evaluating its conservation status.  相似文献   

8.
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next‐generation sequencing was used to generate 1.3 million genome‐wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high‐quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome‐wide association approach, identifying several marker–environment associations (MEAs). Fifty‐seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.  相似文献   

9.
Sparse, incomplete and inappropriate historical records of invasive species often hamper invasive species management interventions. Population genetic analyses of invaders might provide a suitable context for the identification of their source populations and possible introduction routes. Here, we describe the population genetics of Heracleum persicum Desf. ex Fisch and trace its route of introduction into Europe. Microsatellite markers revealed a significantly higher genetic diversity of H. persicum in its native range, and the loss of diversity in the introduced range may be attributed to a recent genetic bottleneck. Bayesian cluster analysis on regional levels identified three and two genetic clusters in the native and the introduced ranges, respectively. A global structure analysis revealed two worldwide distinct genetic groups: one primarily in Iran and Denmark, the other primarily in Norway. There were also varying degrees of admixture in England, Sweden, Finland and Latvia. Approximate Bayesian computation indicated two independent introductions of H. persicum from Iran to Europe: the first one in Denmark and the second one in England. Finland was subsequently colonized by English populations. In contrast to the contemporary hypothesis of English origin of Norwegian populations, we found Finland to be a more likely source for Norwegian populations, a scenario supported by higher estimated histor‐ical migration from Finland to Norway. Genetic diversity per se is not a primary determinant of invasiveness in H. persicum. Our results indicate that, due to either pre‐adaptations or rapid local adaptations, introduced populations may have acqu‐ired invasiveness after subsequent introductions, once a suitable environment was encountered.  相似文献   

10.
The holm oak plays a relevant role in the functioning of Mediterranean forests. In the area north of Garda Lake, Italian Prealps, holm oak populations are at the northernmost edge of their distribution. Being peripheral, these populations are of particular interest for ecological, evolutionary and conservation studies. Through an explicit individual‐based landscape genetics approach, we addressed the following questions: (1) are levels of genetic variation reduced in these marginal populations compared with central populations?; (2) despite the narrow geographical scale, do individual‐based analyses have some power to detect genetic differentiation?; (3) do environmental and/or climatic factors exert a role in shaping patterns of genetic variation and differentiation? Through a Bayesian method, we identified three clusters whose genetic variability can be considered to be of the same order as that recorded in central Quercus ilex populations. Although being geographically very close (< 20 km), the differentiation was statistically significant (P < 0.05) with global F st and Φ Pt values of 0.019 and 0.038, respectively. Geography and phylogeography could not be invoked to explain this differentiation. A redundancy discriminant analysis revealed that relevant eco‐pedological and climatic features, such as soil depth, aspect, elevation and humidity, were correlated with the observed pattern of differentiation. Toblino was ecologically separated from the other clusters, as it lies on deep soil with subhumid conditions. The differentiation of the Brione–Ranzo–Val Busa cluster appeared to be related to superficial soils and drier conditions, whereas the Nanzone–Padaro cluster was differentiated mainly according to its mid‐elevation. Coupling spatial and genetic information on a local scale proved to be effective to investigate the evolutionary and demographic history of peripheral populations. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

11.
Admixture between differentiated populations is considered to be a powerful mechanism stimulating the invasive success of some introduced species. It is generally facilitated through multiple introductions; however, the importance of admixture prior to introduction has rarely been considered. We assess the likelihood that the invasive Ambrosia artemisiifolia populations of Europe and Australia developed through multiple introductions or were sourced from a historical admixture zone within native North America. To do this, we combine large genomic and sampling data sets analysed with approximate Bayesian computation and random forest scenario evaluation to compare single and multiple invasion scenarios with pre‐ and postintroduction admixture simultaneously. We show the historical admixture zone within native North America originated before global invasion of this weed and could act as a potential source of introduced populations. We provide evidence supporting the hypothesis that the invasive populations established through multiple introductions from the native range into Europe and subsequent bridgehead invasion into Australia. We discuss the evolutionary mechanisms that could promote invasiveness and evolutionary potential of alien species from bridgehead invasions and admixed source populations.  相似文献   

12.
Shifts in the geographic distribution of habitats over time can promote dispersal and vicariance, thereby influencing large‐scale biogeographic patterns and ecological processes. An example is that of transient corridors of suitable habitat across disjunct but ecologically similar regions, which have been associated with climate change over time. Such connections likely played a role in the assembly of tropical communities, especially within the highly diverse Amazonian and Atlantic rainforests of South America. Although these forests are presently separated by open and dry ecosystems, paleoclimatic and phylogenetic evidence suggest that they have been transiently connected in the past. However, little is known about the timing, magnitude and the distribution of former forest connections. We employ sequence data at multiple loci from three codistributed arboreal lizards (Anolis punctatus, Anolis ortonii and Polychrus marmoratus) to infer the phylogenetic relationships among Amazonian and Atlantic Forest populations and to test alternative historical demographic scenarios of colonization and vicariance using coalescent simulations and approximate Bayesian computation (ABC). Data from the better‐sampled Anolis species support colonization of the Atlantic Forest from eastern Amazonia. Hierarchical ABC indicates that the three species colonized the Atlantic Forest synchronously during the mid‐Pleistocene. We find support of population bottlenecks associated with founder events in the two Anolis, but not in P. marmoratus, consistently with their distinct ecological tolerances. Our findings support that climatic fluctuations provided key opportunities for dispersal and forest colonization in eastern South America through the cessation of environmental barriers. Evidence of species‐specific histories strengthens assertions that biological attributes play a role in responses to shared environmental change.  相似文献   

13.
Determining the timing, extent and underlying causes of interspecific gene exchange during or following speciation is central to understanding species' evolution. Antarctic notothenioid fish, thanks to the acquisition of antifreeze glycoproteins during Oligocene transition to polar conditions, experienced a spectacular radiation to >100 species during Late Miocene cooling events. The impact of recent glacial cycles on this group is poorly known, but alternating warming and cooling periods may have affected species' distributions, promoted ecological divergence into recurrently opening niches and/or possibly brought allopatric species into contact. Using microsatellite markers and statistical methods including Approximate Bayesian Computation, we investigated genetic differentiation, hybridization and the possible influence of the last glaciation/deglaciation events in three icefish species of the genus Chionodraco. Our results provide strong evidence of contemporary and past introgression by showing that: (i) a substantial fraction of contemporary individuals in each species has mixed ancestry, (ii) evolutionary scenarios excluding hybridization or including it only in ancient times have small or zero posterior probabilities, (iii) the data support a scenario of interspecific gene flow associated with the two most recent interglacial periods. Glacial cycles might therefore have had a profound impact on the genetic composition of Antarctic fauna, as newly available shelf areas during the warmer intervals might have favoured secondary contacts and hybridization between diversified groups. If our findings are confirmed in other notothenioids, they offer new perspectives for understanding evolutionary dynamics of Antarctic fish and suggest a need for new predictions on the effects of global warming in this group.  相似文献   

14.
Jörg Maletz 《Palaeontology》2019,62(1):151-161
Dictyonema retiforme has been regarded as the benthic ancestor to the planktic Graptoloidea, represented by the earliest planktic Rhabdinopora flabelliformis and its descendants. The revision of the type material of Dictyonema retiforme, the type species of the genus Dictyonema, from the Silurian of New York State shows compound stipes formed by the complexly growing and overlapping tubular thecae of acanthograptid type. The connections between adjacent stipes are formed by thecal tubes or thecal bridges and not by dissepiments. Thus, the species has to be transferred to the Acanthograptidae and cannot be regarded as being related to the early planktic Graptoloidea. The tubarium meshwork of Dictyonema is phylogenetically unrelated to the meshwork of the planktic Rhabdinopora, and represents a case of convergent evolution. The origins of the planktic graptoloids lie among members of middle to upper Cambrian Dendrograpidae, as can be seen from the thecal style and the triad budding patterns with regularly developed bithecae in this group.  相似文献   

15.
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.  相似文献   

16.
Woodland restoration sites planted with Quercus lobata (valley oak) often have serious invasions of nonnative annual grasses and thistles. Although prescribed fire can effectively control these exotics, restoration managers may be reluctant to use fire if it causes substantial mortality of recently planted saplings. We studied the effects of prescribed fires on the survival and subsequent growth of 5‐ and 6‐year‐old valley oak saplings at a research field near Davis, California. One set of blocks was burned in summer 2003 at a time that would control yellow star thistle, a second set of blocks was burned in spring 2004 at a time that would control annual grasses, and a third set was left unburned. Very few oaks died as a result of either fire (3–4%). Although a large proportion was top‐killed (66–72%), virtually all these were coppiced and most saplings over 300 cm tall escaped top‐kill. Tree height, fire temperature, and understory biomass were all predictive of the severity of sapling response to fire. Although the mean sapling height was initially reduced by the fires, the growth rates of burned saplings significantly exceeded the growth rates of unburned control trees for 2 years following the fires. By 2–3 years after the fires, the mean height of spring‐ and summer‐burned saplings was similar to that of the unburned control saplings. The presence of valley oak saplings does not appear to preclude the use of a single prescribed burn to control understory invasives, particularly if saplings are over 300 cm tall.  相似文献   

17.
Hypotheses to explain phylogeographic structure traditionally invoke geographic features, but often fail to provide a general explanation for spatial patterns of genetic variation. Organisms' intrinsic characteristics might play more important roles than landscape features in determining phylogeographic structure. We developed a novel comparative approach to explore the role of ecological and life‐history variables in determining spatial genetic variation and tested it on frog communities in Panama. We quantified spatial genetic variation within 31 anuran species based on mitochondrial DNA sequences, for which hierarchical approximate Bayesian computation analyses rejected simultaneous divergence over a common landscape. Regressing ecological variables, on genetic divergence allowed us to test the importance of individual variables revealing that body size, current landscape resistance, geographic range, biogeographic origin and reproductive mode were significant predictors of spatial genetic variation. Our results support the idea that phylogeographic structure represents the outcome of an interaction between organisms and their environment, and suggest a conceptual integration we refer to as trait‐based phylogeography.  相似文献   

18.
19.
Understanding habitat associations is vital for conservation of at‐risk marsh‐endemic wildlife species, particularly those under threat from sea level rise. We modeled environmental and habitat associations of the marsh‐endemic, Federally endangered salt marsh harvest mouse (Reithrodontomys raviventris, RERA) and co‐occurrence with eight associated small mammal species from annual trap data, 1998–2014, in six estuarine marshes in North San Francisco Bay, California. Covariates included microhabitat metrics of elevation and vegetation species and cover; and landscape metrics of latitude–longitude, distance to anthropogenic features, and habitat patch size. The dominant cover was pickleweed (Salicornia pacifica) with 86% mean cover and 37 cm mean height, and bare ground with about 10% mean cover. We tested 38 variants of Bayesian network (BN) models to determine covariates that best account for presence of RERA and of all nine small mammal species. Best models had lowest complexity and highest classification accuracy. Among RERA presence models, three best BN models used covariates of latitude–longitude, distance to paved roads, and habitat patch size, with 0% error of false presence, 20% error of false nonpresence, and 20% overall error. The all‐species presence models suggested that within the pickleweed marsh environment, RERA are mostly habitat generalists. Accounting for presence of other species did not improve prediction of RERA. Habitat attributes compared between RERA and the next most frequently captured species, California vole (Microtus californicus), suggested substantial habitat overlap, with RERA habitat being somewhat higher in marsh elevation, greater in percent cover of the dominant plant species, closer to urban areas, further from agricultural areas, and, perhaps most significant, larger in continuous size of marsh patch. Findings will inform conservation management of the marsh environment for RERA by identifying best microhabitat elements, landscape attributes, and adverse interspecific interactions.  相似文献   

20.
The introduction of non‐native species can have long‐term effects on native plant and animal communities. Introduced populations are occasionally not well understood and offer opportunities to evaluate changes in genetic structure through time and major population changes such as bottleneck and or founder events. Invasive species can often evolve rapidly in new and novel environments, which could be essential to their long‐term success. Sika deer are native to East Asia, and their introduction and establishment to the Delmarva Peninsula, USA, is poorly documented, but probably involved ≥1 founder and/or bottleneck events. We quantified neutral genetic diversity in the introduced population and compared genetic differentiation and diversity to the presumed source population from Yakushima Island, Japan, and a captive population of sika deer in Harrington, Delaware, USA. Based on the data from 10 microsatellite DNA loci, we observed reduced genetic variation attributable to founder events, support for historic hybridization events, and evidence that the population did originate from Yakushima Island stocks. Estimates of population structure through Bayesian clustering and demographic history derived from approximate Bayesian computation (ABC), were consistent with the hypothesized founder history of the introduced population in both timing and effective population size (approximately five effective breeding individuals, an estimated 36 generations ago). Our ABC results further supported a single introduction into the wild happening before sika deer spread throughout the Delmarva. We conclude that free‐ranging sika deer on Delmarva are descended from ca. five individuals introduced about 100 years ago from captive stocks of deer maintained in the United Kingdom. Free‐ranging sika deer on Delmarva have lost neutral diversity due to founder and bottleneck events, yet populations have expanded in recent decades and show no evidence of abnormalities associated with inbreeding. We suggest management practices including increasing harvest areas and specifically managing sika deer outside of Maryland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号