首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Zhao M  Li LP  Sun DL  Sun SY  Huang SD  Zeng S  Jiang HD 《Chirality》2012,24(5):368-373
Tetrahydropalmatine (THP), with one chiral center, is an active alkaloid ingredient in Rhizoma Corydalis. The aim of the present paper is to study whether THP enantiomers are metabolized stereoselectively in rat, mouse, dog, and monkey liver microsomes, and then, to elucidate which Cytochrome P450 (CYP) isoforms are predominately responsible for the stereoselective metabolism of THP enantiomers in rat liver microsomes (RLM). The results demonstrated that (+)-THP was preferentially metabolized by liver microsomes from rats, mice, dogs, and monkeys, and the intrinsic clearance (Cl(int)) ratios of (+)-THP to (-)-THP were 2.66, 2.85, 4.24, and 1.67, respectively. Compared with the metabolism in untreated RLM, the metabolism of (-)-THP and (+)-THP was significantly increased in dexamethasone (Dex)-induced and β-naphthoflavone (β-NF)-induced RLM; meanwhile, the Cl(int) ratios of (+)-THP to (-)-THP in Dex-induced and β-NF-induced RLM were 5.74 and 0.81, respectively. Ketoconazole had stronger inhibitory effect on (+)-THP than (-)-THP, whereas fluvoxamine had stronger effect on (-)-THP in untreated and Dex-induced or β-NF-induced RLM. The results suggested that THP enantiomers were predominately metabolized by CYP3A1/2 and CYP1A2 in RLM, and CYP3A1/2 preferred to metabolize (+)-THP, whereas CYP1A2 preferred (-)-THP.  相似文献   

2.
Chromate metabolism in liver microsomes   总被引:3,自引:0,他引:3  
The carcinogenicity and mutagenicity of various chromium compounds have been found to be markedly dependent on the oxidation state of the metal. The carcinogen chromate was reduced to chromium(III) by rat liver microsomes in vitro. Metabolism of chromate by microsomal enzymes occurred only in the presence of either NADPH or NADH as cofactor. The chromium(III) generated upon metabolism formed a complex with the NADP+ cofactor. Significant binding of chromium to DNA occurred only when chromate was incubated in the presence of microsomes and NADPH. Specific inhibitors of the mixed function oxidase enzymes, 2′-AMP, metyrapone, and carbon monoxide, inhibited the rate of reduction of chromate by microsomes and NADPH. The possible relationship of metabolism of chromate and its interaction with nucleic acids to its carcinogenicity and mutagenicity is discussed.  相似文献   

3.
Qiu J  Wang Q  Zhu W  Jia G  Wang X  Zhou Z 《Chirality》2007,19(1):51-55
A chiral high-performance liquid chromatography method with diode array detector was developed and validated for stereoselective determination of benalaxyl (BX) in rabbit plasma. Good separation was achieved at 20 degrees C using cellulose tris-(3,5-dimethylphenylcarbamate) as chiral stationary phase, a mixture of n-hexane and 2-propanol (97:3) as mobile phase at a flow rate of 1.0 ml/min. The assay method was linear over a range of concentrations (0.25-25 microg/ml) in plasma and the mean recovery was greater than 90% for both enantiomers. The limits of quantification and detection for both enantiomers in plasma were 0.25 and 0.1 microg/ml, respectively. Intra- and interday relative standard deviations (RSDs) did not exceed 10% for three-tested concentrations. The method was successfully applied to pharmacokinetic studies of BX enantiomers in rabbits. The result suggested that the pharmacokinetics of BX enantiomers was stereoselective in rabbits.  相似文献   

4.
Stereoselective degradation of tebuconazole in rat liver microsomes   总被引:1,自引:0,他引:1  
Shen Z  Zhu W  Liu D  Xu X  Zhang P  Zhou Z 《Chirality》2012,24(1):67-71
The aim of this study was to assess the stereoselectivity of two tebuconazole [(RS)-1-p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol] enantiomers in in vitro system (rat liver microsomes). The analytes were extracted with acetic ether and concentrations were determined by high performance liquid chromatography (HPLC) with a cellulose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase. The degradation of rac-tebuconazole (15 μM) followed first-order kinetics, and the degradation of the S-tebuconazole (t(1/2) = 22.31 min) was faster than that of the R-tebuconazole (t(1/2) = 48.76 min), but no significant difference between the enantiomers was found in the respective incubation (7.5 μM for each). Kinetic assays showed that the K(m) was different between the two enantiomers (K(mR) = 14.83 ± 2.19, K(mS) = 12.23 ± 2.72). The interaction results revealed that there was competitive inhibition between S- and R-form, and there was a significant difference between the IC(50) of R- to S-tebuconazole and S- to R-tebuconazole (IC(50R/S)/IC(50S/R) = 4.98).  相似文献   

5.
Wang X  Jia G  Qiu J  Diao J  Zhu W  Lv C  Zhou Z 《Chirality》2007,19(4):300-306
The enantioselective degradation of benalaxyl has been investigated to elucidate its behavior in several agricultural soils and plants (cucumber). Racemic benalaxyl was fortified into five types of agricultural soils and sprayed leaves of cucumber plants, respectively. The degradation kinetics and the enantiomer fraction (EF) were determined by normal-phase high-performance liquid chromatography (HPLC) with diode array detection (DAD) on the chiral column filled cellulose-tri-(3,5-dimethylphenylcarbamate)-based chiral stationary phase (CDMPC-CSP). The process of the degradation of benalaxyl enantiomers followed pseudo-first-order kinetics in cucumber plant. However, the dissipation phases of benalaxyl enantiomers in soils were biphasic ("slow-fast-slow" process). It has been shown that the degradation of benalaxyl was stereoselective. The results indicated that the (+)-S-benalaxyl showed a faster degradation in plants, while the (-)-R-benalaxyl showed a faster degradation in Soils 3, 4, and 5. No stereoselective degradation was observed in other soils.  相似文献   

6.
We investigated the stereoselective degradation kinetics and toxicity of fluroxypyr methylheptyl ester (FPMH) in rat hepatocytes using a chiral high‐performance liquid chromatographic method. The T1/2 of (−)‐FPMH was about two times longer than that of (+)‐FPMH after the rat hepatocytes were incubated with 10, 20, and 50 μM of rac‐FPMH. There was no chiral conversion or transformation during their incubation with the hepatocytes. Toxicity differences were observed among the two enantiomers of FPMH and fluroxypyr (FP) in their EC50 values in rat hepatocytes. Of all the tested compounds, FP was most toxic to the rat hepatocytes. The (−)‐FPMH enantiomer showed higher toxicity than the (+)‐FPMH, whereas the racemic mixture displayed intermediate toxicity. The data presented here are important for a more thorough understanding of this pesticide and should be useful for its full environmental assessment. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

7.
Myclobutanil, (RS)‐2‐(4‐chlorophenyl)‐2‐(1H‐1, 2, 4‐triazol‐1‐ylmethyl)hexanenitrile is a broad‐spectrum systemic triazole fungicide which consists of a pair of enantiomers. The stereoselective degradation of myclobutanil was investigated in rat liver microsomes. The concentrations of myclobutanil enantiomers were determined by high‐performance liquid chromatography (HPLC) with a cellulose‐tris‐(3,5‐dimethyl‐phenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP) under reversed phase condition. The t1/2 of (+)‐myclobutanil is 8.49 min, while the t1/2 of (–)‐myclobutanil is 96.27 min. Such consequences clearly indicated that the degradation of myclobutanil in rat liver microsomes was stereoselective and the degradation rate of (+)‐myclobutanil was much faster than (–)‐myclobutanil. In addition, significant differences between two enantiomers were also observed in enzyme kinetic parameters. The Vmax of (+)‐myclobutanil was about 4‐fold of (–)‐myclobutanil and the CLint of (+)‐myclobutanil was three times as much as (–)‐myclobutanil after incubation in rat liver microsomes. Corresponding consequences may shed light on the environmental and ecological risk assessment for myclobutanil and may improve human health. Chirality 26:51–55, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The amino acid composition of proteins from liver microsomes has been studied in rats and in human subjects with normal liver, with obstructive jaundice or liver cirrhosis. The pattern of the amino acid composition of microsomes appeared to be species-specific. Phenylalanine, threonine, serine, proline, histidine and [aspartic acid plus asparagine] were increased, while alanine, tyrosine, glycine and arginine were decreased in the human compared to the rat microsomes. In patients with obstructive jaundice of short duration (less than two months) only a slight decrease in leucine and phenylalanine could be noticed, while in the case of liver cirrhosis amino acid composition was markedly changed.  相似文献   

9.
In the present study we investigated if administration of vitamin A could protect rat liver microsomes and mitochondria from in vitro peroxidation. Appreciable decrease of chemiluminescence and lipid peroxidation was measured in microsomal membranes from rats receiving vitamin A, with respect to control animals. In membranes derived from control animals, the fatty acid composition was profoundly modified when subjected to in vitro peroxidation mediated by ascorbate-Fe++, with a considerable decrease of 20:4 n6 and 22:6 n3 in mitochondria and 18:2 n6 and 20:4 n6 in microsomes. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of specific fatty acids was higher in supplemented animals than in control group when both kind of membranes were analyzed. These changes were less pronounced in membranes derived from rats receiving vitamin A. These results are in agreement with previous results that indicated that vitamin A may act as an antioxidant protecting membranes from deleterious effects.Abbreviations BHT butylated hydroxytoluene - BSA bovine serum albumin - CL chemiluminescence - PI peroxidizability index Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones Cientificas y Técnicas de la Republica Argentina  相似文献   

10.
Xu X  Shen Z  Diao J  Zhang P  Jiang J  Zhou Z 《Chirality》2011,23(6):472-478
We investigated the stereoselective degradation kinetics of fluroxypyr methylheptyl ester (FPMH) in rabbits using a chiral high-performance liquid chromatographic method. In 20% rabbit plasma, the half lives of (+)-FPMH and (-)-FPMH were 2.5 and 10.9 min, respectively. Thus, the enantioselective degradation was faster for (+)-FPMH than for (-)-FPMH in rabbit plasma in vitro, and there was no chiral conversion or transformation during incubation of the plasma. The degradation of (+)-FPMH was also much faster than that of the (-)-FPMH in the kidney, lung, and muscle after the intravenous administration of 50 mg/kg racemic FPMH (rac-FPMH), whereas the concentrations of FPMH were below the limit of quantification in other tissues. Furthermore, 98% rac-FPMH was quickly (within 10 min) hydrolyzed to fluroxypyr (FP) in rabbit liver microsomes. Therefore, we examined FP in rabbit plasma and tissues in vivo. We detected FP in all tissues; its concentration was higher in the urine than in the other tissues. FP was rapidly excreted unchanged, principally in the urine. The data presented here are important for a more thorough understanding of this pesticide and should be useful for its full environmental assessment.  相似文献   

11.
An efficient, sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) chiral analysis method was established for determination of chloroquine and hydroxychloroquine enantiomers in rat liver microsomes. Effects of polysaccharide chiral stationary phases and basic additives on chiral separations of two analytes were discussed in detail. Amylose tris(3, 5-dimethylphenylcarbamate)-coated chiral stationary phase showed the best separation performance for them with acetonitrile-diethylamine-ethanol-diethylamine mixture (90:0.1:10:0.1, v/v/v/v) among four chiral stationary phases. Then, multiple reaction monitoring mode was selected as the data acquisition for determination of two pairs of enantiomers. The proposed LC–MS/MS chiral analysis method was validated in terms of linearity, accuracy, precision, and specificity. Good linearity with correlation coefficient over 0.998 was obtained in the concentration range of 0.05–5 μM. Limits of quantification for chloroquine and hydroxychloroquine enantiomers were 5.0 and 1.0 nM, respectively. The recoveries ranged from 81.14% to 111.09%. The intra-day and inter-day relative standard deviation were less than 6.5%. Moreover, concentrations of chloroquine and hydroxychloroquine enantiomers in rat liver microsomes were determined through the proposed LC–MS/MS analysis method. After incubated with rat liver microsomes for 10 min, the enantiomeric factor of hydroxychloroquine decreased from 0.50 to 0.45 (p < 0.001). In brief, our developed determination method for chloroquine and hydroxychloroquine enantiomers through LC–MS/MS spectrometry showed the characteristics of high-efficiency, fast speed, and very low detection limit, and would be greatly beneficial for screening and quantitation of them in biological matrices.  相似文献   

12.
The role of pH in uncoupling the electron-flux between oxidoreductase and cytochrome P450 (P450) or P450 and cyclosporine (CyA) and resulting in the generation of oxygen radicals was investigatedin vitro in rat and human liver microsomal preparations. Since the electron-flux from NADPH to cytochrome c via oxidoreductase showed a fairly constant reduction activity from pH 7.0–9.5, the generation of oxygen radicals at the level of P450-Cyclosporine (instead of oxidoreductase-P450) was investigated. The effects of increasing pH on oxygen radical formation was measured by the thiobarbituric acid assay (TBA) and the adrenochrome reaction. The trends in oxygen radical production were correlated with benzphetamine metabolism (production of formaldehyde) and CyA metabolism (analyzed by high performance liquid chromatography). The TBA assay showed increased MDA-detected lipid peroxidation (unrelated to autooxidation) at pH<8.0 and pH>8.0 (rat and human, respectively) while the adrenochrome reaction showed decreased oxygen radical production. When these results were compared to benzphetamine (a substrate of P450 2B and 3A) metabolism and CyA (a substrate of P450 3A) metabolism, increased metabolism followed the pH-dependent trend of MDA-detected lipid peroxidation. Benzphetamine metabolism with formaldehyde production and depletion of parent compound during CyA metabolism were increased at pH<8.0 in the rat samples and at pH>8.0 in the human samples. This parallel relation suggests that the increased metabolism of CyA at lower pH in rats and higher pH in humans may be the result of favorable interactions of P450 with Cyclosporine that also result in increased oxygen radical-related lipid peroxidation.Abbreviations CCl4 carbon tetrachloride - CyA cyclosporin A - EDTA ethylenediaminetetraacetic acid - HPLC high performance liquid chromatography - MDA malondialdehyde - MFO mixed function oxidase - MICROS microsomes - NADPH nicotinamide adenine dinucleotide phosphate - TBA thiobarbituric acid This work was supported by Grant No. CA-53191 from the National Cancer Institute DHHW  相似文献   

13.
In the present study, we examined the effect of the intraperitoneal administration of vitamin E (100 mg/kg weight/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of rat liver microsomes . We also analyzed the effect of hepatic cytosolic proteins on this process. The results indicate that the ascorbate induced light emission was 76% lower in microsomes (1 mg protein) obtained from vitamin E treated animals when compared with controls. In the presence of cytosolic protein (1 mg) the chemiluminescence of control microsomes diminished 55.8 and 59.5% when cytosol from controls and treated animals was used, respectively. The chemiluminescence of vitamin E microsomes diminished 25.03 and 22.08% when both types of cytosol were added to the medium. Dialyzed or treated at 70°C cytosol was also able to inhibit the lipid peroxidation of either control or vitamin E rat liver microsomes. By means of gas chromatography we analyzed the fatty acid composition of native and peroxidated microsomes from both animal groups. The peroxidation affected principally arachidonic acid and its diminution was more evident in the control microsomes than in the microsomes from the vitamin E treated group. By HPLC we analyzed the vitamin E content in all subcellular fractions employed. In microsomes from the vitamin E-group, the content of vitamin was 11 times higher than in the control ones (0.678 ± 0.1038 vs. 0.062 ± 0.0045 g -tocopherol/mg protein, respectively), while levels in the cytosol from the vitamin E-group were only 2 times higher than in the control cytosol (0.057 ± 0.0051 vs. 0.025 ± 0.0015 g -tocopherol/mg protein, respectively).  相似文献   

14.
Polyunsaturated fatty acids (PUFA) are vulnerable to peroxidative attack. Protecting PUFA from peroxidation is essential to utilize their beneficial effects in health and in preventing disease. The antioxidants vitamin E, t-butylhydroxy toluene (BHT) and t-butylhydroxy anisole (BHA) inhibited ascorbate/Fe2+-induced lipid peroxidation in rat liver microsomes. In addition, a number of spice principles, for example, curcumin (5–50 µM) from turmeric, eugenol (25–150 µM) from cloves and capsaicin (25–150 µM) from red chillies inhibited lipid peroxidation in a dose-dependent manner. Zingerone from ginger inhibited lipid peroxidation at high concentrations (> 150 µM) whereas linalool (coriander), piperine (black pepper) and cuminaldehyde (cumin) had only marginal inhibitory effects even at high concentrations (600 µM). The inhibition of lipid peroxidation by curcumin and eugenol was reversed by adding high concentrations of Fe2+.  相似文献   

15.
J D Huang  C Y Hsieh 《Chirality》1991,3(6):454-459
Different doses of rac-p-HPPH (0.4 and 4 mg/h) were given repeatedly to rats infused with [14C]phenytoin. The serum levels of 14C-labeled and unlabeled p-HPPH, and [14C]phenytoin were measured by an HPLC method and radiometric analysis. The clearance of phenytoin and p-HPPH was determined by rate of dosing divided by the steady-state concentration. The phenytoin clearance was significantly lower in the high dose p-HPPH injection group than in the low dose group (87 versus 262 ml/h), whereas p-HPPH clearance showed no difference. The formation clearance of [14C]p-HPPH was also significantly lower in rats injected with high dose of p-HPPH (35 versus 169 ml/h). The clearance of other elimination pathways was also lower in rats with high dose of p-HPPH (53 versus 89 ml/h). The serum protein binding of phenytoin was lower in rats injected with high dose of p-HPPH. The result indicated that injections of rac-p-HPPH mainly inhibited on the formation of p-HPPH itself. The formation of (R)-p-HPPH and (S)-p-HPPH in microsomal preparation was measured by a ligand-exchange chromatographic method. The formation of (S)-p-HPPH or (R)-p-HPPH was not only inhibited by the enantiomer itself, but also cross-inhibited by the other enantiomer. To the formation of either (S)-p-HPPH or (R)-p-HPPH, (S)-p-HPPH showed a higher inhibitory activity. The use of rac-p-HPPH to inhibit phenytoin metabolism in vivo involved several mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Tetrahydropalmatine (THP), with one chiral center, is an alkaloid that possesses analgesic and many other pharmacological actives. The aim of the present study is to investigate stereoselective metabolism of THP enantiomers in human liver microsomes (HLM) and elucidate which cytochrome P450 (CYP) isoforms contribute to the stereoselective metabolism in HLM. Additionally, the inhibitions of THP enantiomers on activity of CYP enzymes are also investigated. The results demonstrated that (+)‐THP was preferentially metabolized by HLM. Ketoconazole (inhibitor of CYP3A4/5) inhibited metabolism of (?)‐THP or (+)‐THP at same degree, whereas the inhibition of fluvoxamine (inhibitor of CYP1A2) on metabolism of (+)‐THP was greater than that of (?)‐THP; moreover, the metabolic rate of (+)‐THP was 5.3‐fold of (?)‐THP in recombinant human CYP1A2. Meanwhile, THP enantiomers did not show obvious inhibitory effect on the activity of various CYP isoforms (CYP1A2, 2A6, 2C8, 2C9, 2C19, 2E1, and 3A4/5), whereas (?)‐THP, but not (+)‐THP, significantly inhibited the activity of CYP2D6 with the Ki value of 6.42 ± 0.38 μM. The results suggested that THP enantiomers were predominantly metabolized by CYP3A4/5 and CYP1A2 in HLM, and (+)‐THP was preferentially metabolized by CYP1A2, whereas CYP3A4/5 contributed equally to metabolism of (?)‐THP or (+)‐THP. Besides, the inhibition of CYP2D6 by (?)‐THP may cause drug–drug interaction, which should be considered. Chirality 25:43–47, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Aldrin epoxidase activity in liver microsomes from streptozotocin-diabetic rats is only 40% of that from normal rats. Epoxidation of aldrin has also been assayed in freshly isolated hepatocytes from normal rats. Addition of 10–7 M glucagon to the incubation medium leads to a decreased aldrin epoxidase activity. Owing to the previously reported phosphorylation of a purified cytochrome P-450 isozyme, it is postulated that the cytochrome P-450 dependent aldrin epoxidase may be regulated by a glucagon induced phosphorylation process.  相似文献   

18.
In the study reported here the effect of conjugated linoleic acid (CLA) and vitamin A on the polyunsaturated fatty acid composition, chemiluminescence and peroxidizability index of microsomes and mitochondria isolated from rat liver was analyzed. The effect of CLA on the polyunsaturated fatty acid composition of native microsomes was evidenced by an statistically significant p < 0.007 decrease of linoleic acid C18:2 n6, whereas in mitochondria it was observed a decrease p < 0.0001 of arachidonic acid C20:4 n6 when compared with vitamin A and control groups. Docosahexaenoic acid C22:6 n3 in mitochondria was reduced p < 0.04 in CLA and vitamin A groups when compared with control. After incubation of microsomes or mitochondria in an ascorbate (0.4 mM)-Fe++ (2.15 M) system (120 min at 37°C) it was observed that the total cpm/mg protein originated from light emission: chemiluminescence was lower in liver microsomes or mitochondria obtained from CLA group (received orally: 12.5 mg/daily during 10 days) than in the vitamin A group (received intraperitoneal injection: daily 0.195 g/kg during 10 days). CLA reduced significantly maximal induced chemiluminescence in microsomes relative to vitamin A and control groups, whereas in mitochondria the effect was observed relative to control group The polyunsaturated fatty acid composition of liver microsomes or mitochondria changed by CLA and vitamin A treatment. The polyunsaturated fatty acids mainly affected when microsomes native and peroxidized from control group were compared were linoleic, linolenic and arachidonic acids, while in vitamin A group linoleic and arachidonic acid were mainly peroxidized, whereas in CLA group only arachidonic acid was altered. In mitochondria obtained from the three groups arachidonic acid and docosahexaenoic acid showed a significant decrease when native and peroxidized groups were compared. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of fatty acids, show significant changes in the CLA group compare vitamin A and control groups. The simultaneous analysis of peroxidizability index, chemiluminescence and fatty acid composition demonstrated that CLA is more effective than vitamin A protecting microsomes or mitochondria from peroxidative damage.  相似文献   

19.
Rat liver rough endoplasmic reticulum membranes (ER) contain two characteristic transmembrane glycoproteins which have been designated ribophorins I and II and are absent from smooth ER membranes. These proteins (MW 65,000 and 63,000 respectively) are related to the binding sites for ribosomes, as suggested by the following findings: (i) The ribophorin content of the rough ER membranes corresponds stoichiometrically to the number of bound ribosomes; (ii) ribophorins are quantitatively recovered with the bound polysomes after most other ER membrane proteins are dissolved with the nonionic detegent Kyro EOB; (iii) in intact rough microsomes ribophorins can be crosslinked chemically to the ribosomes and therefore are in close proximity to them. Treatment of rough microsomes with a low Triton X-100 concentration leads to the lateral displacement of ribosomes on the microsomal surface and to the formation of aggregates of bound ribosomes in areas of membranes which frequently invaginate into the microsomal lumen. Subfractionation of Triton-treated microsomes containing invaginations led to the recovery of smooth and “rough-inverted” vesicles. Ribophorins were present only in the latter fraction, indicating that both proteins are displaced together with the ribosome-binding capacity of rough and smooth microsomal membranes reconstituted after solubilization with detergents sugest that ribophorins are necessary for in vitro ribosome binding. Ribophorin-like proteins were found in rough microsomes obtained from secretory tissues of several animal species. The two proteins present in rat lacrimal gland microsomes have the same mobility as hepatocyte ribophorins and cross-react with antisera against them.  相似文献   

20.
Gu X  Wang P  Liu D  Lv C  Lu Y  Zhou Z 《Chirality》2008,20(2):125-129
The stereoselective degradation of the racemic benalaxyl in vegetables such as tomato, tobacco, sugar beet, capsicum, and the soil has been investigated. The two enantiomers of benalaxyl in the matrix were extracted by organic solvent and determined by validated chiral high-performance liquid chromatography with a cellulose-tris-(3, 5-dimethylphenylcarbamate)-based chiral column. Rac-benalaxyl was fortified into the soil and foliar applied to vegetables. The assay method was linear over a range of concentrations (0.5-50 microg ml(-1)) and the mean recoveries in all the samples were more than 70% for the two enantiomers. The limit of detection for both enantiomers was 0.05 microg g(-1). The results in soil showed that R-(-)-enantiomer dissipated faster than S-(+)-enantiomer and the stereoselectivity might be caused by microorganisms. In tomato, tobacco, sugar, beet, and capsicum plants, there was significantly stereoselective metabolism. The preferential absorption and degradation of S-(+)-enantiomer resulted an enrichment of the R-(-)-enantiomer residue in all the vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号