首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glucose kinases (Glks) are enzymes of the glycolytic pathway involved in glucose phosphorylation. These enzymes can use various phosphoryl donors such as ATP, ADP, and polyphosphate. In several streptomycetes, ATP-glucose kinase (ATP-Glk) has been widely studied and regarded as the main glucose phosphorylating enzyme and is likely a regulatory protein in carbon catabolite repression. In cell extracts from the doxorubicin overproducing strain Streptomyces peucetius var. caesius, grown in glucose, a polyphosphate-dependent Glk (Pp-Glk) was detected by zymogram. Maximum activity was observed during the stationary growth phase (48 h) of cells grown in 100 mM glucose. No activity was detected when 20 mM glutamate was used as the only carbon source, supporting a role for glucose in inducing this enzyme. Contrary to wild-type strains of Streptomyces coelicolor, Streptomyces lividans, and Streptomyces thermocarboxydus K-155, S. peucetius var. caesius produced 1.8 times more Pp-Glk than ATP-Glk. In addition, this microorganism produced five and four times more Pp-Glk and anthracyclines, respectively, than its wild-type S. peucetius parent strain, supporting a role for this enzyme in antibiotic production in the overproducer strain. A cloned 726-bp DNA fragment from S. peucetius var. caesius encoded a putative Pp-Glk, with amino acid identities between 83 and 87 % to orthologous sequences from the above-cited streptomycetes. The cloned fragment showed the polyphosphate-binding sequences GXDIGGXXIK, TXGTGIGSA, and KEX(4)SWXXWA. Sequences for the Zn-binding motif were not detected in this fragment, suggesting that Pp-Glk is not related to the Glk ROK family of proteins.  相似文献   

3.
4.
5.
6.
Members of the soil-dwelling prokaryotic genus Streptomyces are indispensable for the recycling of complex polysaccharides, and produce a wide range of natural products. Nutrient limitation is likely to be a major signal for the onset of their development, resulting in spore formation by specialized aerial hyphae. Streptomycetes grow on numerous carbon sources, which they utilize in a preferential manner. The main signaling pathway underlying this phenomenon is carbon catabolite repression, which in streptomycetes is totally dependent on the glycolytic enzyme glucose kinase (Glk). How Glk exerts this fascinating dual role (metabolic and regulatory) is still largely a mystery. We show here that while Glk is made constitutively throughout the growth of Streptomyces coelicolor A3(2), its catalytic activity is modulated in a carbon source-dependent manner: while cultures growing exponentially on glucose exhibit high Glk activity, mannitol- grown cultures show negligible activity. Glk activity was directly proportional to the amount of two Glk isoforms observed by Western blot analysis. The activity profile of GlcP, the major glucose permease, correlated very well with that of Glk. Our data are consistent with a direct interaction between Glk and GlcP, suggesting that a Glk-GlcP permease complex is required for efficient glucose transport by metabolic trapping. This is supported by the strongly reduced accumulation of glucose in glucose kinase mutants. A model to explain our data is presented.  相似文献   

7.
Glucose kinase of Streptomyces coelicolor A3(2) is essential for glucose utilisation and is required for carbon catabolite repression (CCR) exerted through glucose and other carbon sources. The protein belongs to the ROK-family, which comprises bacterial sugar kinases and regulators. To better understand glucose kinase function, we have monitored the cellular activity and demonstrated that the choice of carbon sources did not significantly change the synthesis and activity of the enzyme. The DNA sequence of the Streptomyces lividans glucose kinase gene glkA was determined. The predicted gene product of 317 amino acids was found to be identical to S. coelicolor glucose kinase, suggesting a similar role for this protein in both organisms. A procedure was developed to produce pure histidine-tagged glucose kinase with a yield of approximately 10 mg/l culture. The protein was stable for several weeks and was used to raise polyclonal antibodies. Purified glucose kinase was used to explore protein-protein interaction by surface plasmon resonance. The experiments revealed the existence of a binding activity present in S. coelicolor cell extracts. This indicated that glucose kinase may interact with (an)other factor(s), most likely of protein nature. A possible cross-talk with proteins of the phosphotransferase system, which are involved in carbon catabolite repression in other bacteria, was investigated.  相似文献   

8.
9.
Streptomyces peucetius var. caesius produces a family of secondary metabolites called anthracyclines. Production of these compounds is negatively affected in the presence of glucose, galactose, and lactose, but the greatest effect is observed under conditions of excess glucose. Other carbon sources, such as arabinose or glutamate, show either no effect or stimulate production. Among the carbon sources that negatively affect anthracycline production, glucose is consumed in greater concentrations. We determined glucose and galactose transport in S. peucetius var. caesius and in a mutant of this strain whose anthracycline production is insensitive to carbon catabolite repression (CCR). In the original strain, incorporation of glucose and galactose was stimulated when the microorganism was grown in media containing these sugars, although we also observed basal galactose incorporation. Both the induced and the basal incorporation of galactose were suppressed when the microorganism was grown in the presence of glucose. Furthermore, adding glucose directly during the transport assay also inhibited galactose incorporation. In the mutant strain, we observed a reduction in both glucose (48%) and galactose (81%) incorporation compared to the original. Galactose transport in this mutant showed reduced sensitivity to the negative effect of glucose; however, it was still sensitive to inhibition. The deficient transport of these sugars, as well as CCR sensitivity to glucose in this mutant was corrected when the mutant was transformed with the SCO2127 region of the Streptomyces coelicolor genome. Our results support a role for glucose as the most easily utilized carbon source capable of exerting the greatest repression on anthracycline biosynthesis. In consequence, glucose also prevented the repressive effect of galactose by suppressing its incorporation. This suggests the participation of an integral regulatory system, which is initiated by an increase in incorporation of repressive sugars and their metabolism as a prerequisite for establishing the phenomenon of CCR in S. peucetius var. caesius.  相似文献   

10.
Carbon catabolite repression (CCR) is a common phenomenon in bacteria that modulates expression of genes involved in uptake of alternative carbon sources. In the filamentous streptomycetes, which produce half of all known antibiotics, the precise mechanism of CCR is yet unknown. We report here that the ROK-family regulator Rok7B7 pleiotropically controls xylose and glucose uptake, CCR, development, as well as production of the macrolide antibiotics avermectin and oligomycin A in Streptomyces avermitilis. Rok7B7 directly repressed structural genes for avermectin biosynthesis, whereas it activated olmRI, the cluster-situated activator gene for oligomycin A biosynthesis. Rok7B7 also directly repressed the xylose uptake operon xylFGH, whose expression was induced by xylose and repressed by glucose. Both xylose and glucose served as Rok7B7 ligands. rok7B7 deletion led to enhancement and reduction of avermectin and oligomycin A production, respectively, relieved CCR of xylFGH, and increased co-uptake efficiency of xylose and glucose. A consensus Rok7B7-binding site, 5′-TTKAMKHSTTSAV-3′, was identified within aveA1p, olmRIp, and xylFp, which allowed prediction of the Rok7B7 regulon and confirmation of 11 additional targets involved in development, secondary metabolism, glucose uptake, and primary metabolic processes. Our findings will facilitate methods for strain improvement, antibiotic overproduction, and co-uptake of xylose and glucose in Streptomyces species.  相似文献   

11.
The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivations on single carbon sources, it was demonstrated that xylose acted as a carbon catabolite repressor (xylose cultivations), while the enzymes in the xylose utilisation pathway were also subject to repression in the presence of glucose (glucose cultivations). In the wild type strain growing on the sugar mixture, glucose repression of xylose utilisation was observed; with xylose utilisation occurring only after glucose was depleted. This phenomenon was not seen in the creA deleted strain, where glucose and xylose were catabolised simultaneously. Measurement of key metabolites and the activities of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression had been relieved. Xylose was both a repressor and an inducer of xylanases at the same time. The creA mutation seemed to have pleiotropic effects on carbohydratases and carbon catabolism.  相似文献   

12.
13.
14.
15.
Most enzymes involved in tryptophan catabolism via kynurenine formation are highly conserved in Prokaryotes and Eukaryotes. In humans, alterations of this pathway have been related to different pathologies mainly involving the central nervous system. In Bacteria, tryptophan and some of its derivates are important antibiotic precursors. Tryptophan degradation via kynurenine formation involves two different pathways: the eukaryotic kynurenine pathway, also recently found in some bacteria, and the tryptophan-to-anthranilate pathway, which is widespread in microorganisms. The latter produces anthranilate using three enzymes also involved in the kynurenine pathway: tryptophan 2,3-dioxygenase (TDO), kynureninase (KYN), and kynurenine formamidase (KFA). In Streptomyces coelicolor, where it had not been demonstrated which genes code for these enzymes, tryptophan seems to be important for the calcium- dependent antibiotic (CDA) production. In this study, we describe three adjacent genes of S. coelicolor (SCO3644, SCO3645, and SCO3646), demonstrating their involvement in the tryptophan-to-anthranilate pathway: SCO3644 codes for a KFA, SCO3645 for a KYN and SCO3646 for a TDO. Therefore, these genes can be considered as homologous respectively to kynB, kynU, and kynA of other microorganisms and belong to a constitutive catabolic pathway in S. coelicolor, which expression increases during the stationary phase of a culture grown in the presence of tryptophan. Moreover, the S. coelicolor ΔkynU strain, in which SCO3645 gene is deleted, produces higher amounts of CDA compared to the wild-type strain. Overall, these results describe a pathway, which is used by S. coelicolor to catabolize tryptophan and that could be inactivated to increase antibiotic production.  相似文献   

16.
17.
Summary A selection by glucosamine for mutants of Hansenula polymorpha insensitive to glucose repression of methanol assimilation is described. Constitutive synthesis of enzymes is established in standard batch cultures of glucosegrown cells. Upon prolonged glucose metabolism the phenotype is masked by catabolite inactivation and degradation of enzymes. Addition of the substrate methanol remarkably improves constitutive synthesis by preventing catabolite inactivation and delaying degradation. Regular peroxisomes of reduced number are formed in mutant cells under repressed conditions. No constitutive synthesis is detectable using ethanol as a carbon source. In addition, this alcohol is detrimental to growth of the mutants, indicating that H. polymorpha is constrained to repress synthesis of enzymes involved in the C1-metabolism when ethanol is present as a substrate.  相似文献   

18.
In Aeromonas formicans two inducible catabolic pathways of L-arginine have been characterized. The arginine decarboxylase is induced by arginine which also induces the three enzymes of the arginine deiminase pathway but only in stress conditions such as a shift from aerobic growth conditions to very low oxygen tension. Addition of glucose to medium containing arginine leads to repression of the enzymes involved in the arginine deiminase pathway while exogenous cAMP prevents that repression of enzyme synthesis by glucose. This suggests that the induction of arginine deiminase pathway is regulated by carbon catabolite repression and the energetic state of the cell.  相似文献   

19.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

20.
The enzymes in the arginine breakdown pathway (arginase, ornithine-delta-transaminase, and Delta'-pyrroline-5-carboxylate dehydrogenase) were found to be present in Bacillus licheniformis cells during exponential growth on glutamate. These enzymes could be coincidentally induced by arginine or ornithine to a very high level and their synthesis could be repressed by the addition of glucose, clearly demonstrating catabolite repression control of the arginine degradative pathway. The strongest catabolite repression control of arginase occurred when cells were grown on glucose and this control decreased when cells were grown on glycerol, acetate, pyruvate, or glutamate. The proline catabolite pathway was present in B. licheniformis during exponential growth on glutamate. The proline oxidation and the Delta'-pyrroline-5-carboxylate dehydrogenase in this breakdown pathway were induced by l-proline to a high level. The Delta'-pyrroline-5-carboxylate dehydrogenase was found to be under catabolite repression control. Arginase could be induced by proline and arginine addition induced proline oxidation, suggesting a common in vivo inducer for these convergent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号