首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unidirectional fluxes of Cl- and Na+ across the frog gastric mucosa in vitro were investigated with radioactive isotopes, and related to the secretory and electrical properties of the normal, and metabolically inhibited, mucosa. The flux of Cl- from nutrient to secretory surface of the mucosa was observed to rise sharply with increasing acid secretion, while the corresponding flux of Na+ did not change appreciably. Lowering [NaCl] in the secretory solution caused a proportional drop in the fluxes from secretory to nutrient surface, of both Cl- and Na+. Under the same conditions, the flux of Cl- from nutrient to secretory surface fell by nearly the same amount as did the flux of Cl- in the opposite direction, while the flux of Na+ from nutrient to secretory surface remained essentially unchanged. Electrical and hydrodynamic causes for this observation could be excluded. Metabolic inhibitors, including cyanide, azide, DNP, and anaerobiosis depressed Cl- flux in both directions distinctly below the corresponding values observed with the normal, non-secreting mucosa. At the same time, a decrease in electrical potential difference and conductance was observed under inhibition. The flux of Na+ was little changed by metabolic inhibition. The relationship between fluxes and conductance of Cl- during metabolic inhibition differs markedly from that observed under normal conditions, and is consistent with the view that during metabolic inhibition most of the Cl- moving across the mucosa does so as a free ion. From the above data it is concluded that Cl- is normally transported across the mucosa in combination with a carrier, the supply of which is impaired under metabolic inhibition. According to the behavior of the Na+ flux, the passive permeability of the mucosa appeared to be little affected by the metabolic inhibition applied, but seemed to rise considerably after death of the mucosa, probably due to structural damage.  相似文献   

2.
A microsomal Mg-ATPase from the gastric mucosa of dog, cat and frog has a Km for ATP in the region 20–25 μM and by the value of this coefficient can be differentiated from the mitochondrial Mg-ATPase. The microsomal Mg-ATPase from dog gastric mucosa can be stimulated by gramicidin, nigericin and valinomycin in a KCl medium. This Mg-ATPase seems to be located in the ion impermeable membrane of microsomal vesicles and ATP hydrolysis driven changes of the outer pH can be observed. The data are consistent with the ATP hydrolysis driven entry of H+ ions across the vesicle membrane.  相似文献   

3.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7 · 10?4 M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ > Rb+ > Cs+ > Na+ > Li+ and is inhibited by ATPase inhibitors such as N,N′-dicylclohexylcarbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphorylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K? gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive skin with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

4.
The Influence of H+ on the Membrane Potential and Ion Fluxes of Nitella   总被引:23,自引:4,他引:19  
The resting membrane potential of the Nitella cell is relatively insensitive to [K]o, but behaves like a hydrogen electrode. K+ and Cl- effluxes from the cell were measured continuously, while the membrane potential was changed either by means of a negative feedback circuit or by external pH changes. The experiments indicate that PK and PCl are independent of pH but are a function of membrane potential. Slope ion conductances, GK, GCl, and GNa were calculated from efflux measurements, and their sum was found to be negligible compared to membrane conductance. The possibility that a boundary potential change might be responsible for the membrane potential change was considered but was ruled out by the fact that the peak of the action potential remained at a constant level regardless of pH changes in the external solution. The conductance for H+ was estimated by measuring the membrane current change during an external pH change while the membrane potential was clamped at K+ equilibrium potential. In the range of external pH 5 to 6, H+ chord conductance was substantially equal to the membrane conductance. However, the [H]i measured by various methods was not such as would be predicted from the [H]o and the membrane potential using the Nernst equation. In artificial pond water containing DNP, the resting membrane potential decreased; this suggested that some energy-consuming mechanism maintains the membrane potential at the resting level. It is probable that there is a H+ extrusion mechanism in the Nitella cell, because the potential difference between the resting potential and the H+ equilibrium potential is always maintained notwithstanding a continuous H+ inward current which should result from the potential difference.  相似文献   

5.
Inhibitors of proton pumping: effect on passive proton transport   总被引:6,自引:2,他引:4       下载免费PDF全文
Reported inhibitors of the Characean plasmalemma proton pump were tested for their ability to inhibit the passive H+ conductance which develops in Chara corallina Klein ex Willd. at high pH. Diethylstilbestrol inhibits the proton pump and the passive H+ conductance with about the same time course, at concentrations that have no effect on cytoplasmic streaming. N-Ethylmaleimide, a sulfhydryl reagent which is small and relatively nonpolar, also inhibits both pumping and passive conductance of H+. However, it also inhibits cytoplasmic streaming with about the same time course, and therefore could not be considered a specific ATPase inhibitor. p-Chloromercuribenzene sulfonate (PCMBS), a sulfhydryl reagent which is large and charged and hence less able to penetrate the membrane, does not inhibit pumping or conductance at low concentration. At high concentration, PCMBS sometimes inhibits pumping without affecting H+ conductance, but since streaming is also inhibited, the effect on the pump cannot be said to be specific. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, a water soluble carbodiimide, weakly inhibits both pump and conductance, apparently specifically.  相似文献   

6.
Leishmania donovani has an active K+/H+ exchange system on the surface membrane. Modulation of external K+ concentration resulted in a corresponding change in internal pH (pHi) suggesting a link between proton and potassium transport. Although a Na+/H+ antiporter is present on the plasma membrane, its sensitivity to amiloride suggests that it operates independent of K+/H+ exchange. Reduction of cellular ATP with NaN3 and KCN inhibits K+/H+ exchange showing thereby that the process is energy dependent. The K+/H+ exchange is sensitive to inhibitors of the gastric K+/H+-ATPase. It is concluded that the H+-ATPase previously reported on the plasma membrane of L. donovani is in fact a K+/H+-ATPase. © 1994 wiley-Liss, Inc.  相似文献   

7.
Summary An attempt has been made to simulate the light-induced oscillations of the membrane potential of Potamogeton lucens leaf cells in relation to the apoplastic pH changes. Previously it was demonstrated that the membrane potential of these cells can be described in terms of proton movements only. It is hypothesized that the membrane potential is determined by an electrogenic H+-ATPase with a variable H+/ATP stoichiometry. The stoichiometry shifts from a value of two in the dark to a value of one in the light. Moreover, this H+ pump shows the characteristics of either a pump or a passive H+ conductance: the mode of operation of the H+ translocator is considered to be regulated by the external pH. The pump conductance is assumed to be dominant at low or neutral pH, while the passive H+ conductance becomes more significant at alkaline pH. The pH dependence of the transport characteristic is expressed by protonation reactions in the plasma membrane. The proposed model can account for most features of the light-induced oscillations but not for the absolute level of the membrane potential.This research was supported by the Foundation of Biophysics, part of the Dutch Organization for Scientific Research (NWO) ECOTRANS publication No. 34.  相似文献   

8.
Employing a simple one-step sucrose gradient fractionation method, gastric mucosal membrane of Syrian hamster was prepared and demonstrated to be specifically enriched in H+,K+-ATPase activity. The preparation is practically devoid of other ATP hydrolyzing activity and contains high K+-stimulated ATPase, activity of at least 4–5 fold compared to basal ATPase activity. The H+,K+-ATPase showed hydroxylamine-sensitive phosphorylation and K+-dependent dephosphorylation of the phospho-enzyme, characteristic inhibition by vanadate, omeprazole and SCH 28080, and nigericin-reversible K+-dependent H+-transport — properties characteristic of gastric proton pump One notable difference with H+,K+-ATPase of other species has been the observation of valinomycin-independent H+ transport in such membrane vesicles. It is proposed that such H+,K+-ATPase-rich hamster gastric mucosal membrane preparation might provide a unique model to study physiological aspects of H+,K+-ATPase-function in relation to HCl secretion.  相似文献   

9.
Rat gastric membranes enriched in (H+-K+)-ATPase, when prepared in the presence of 1 mM ethyleneglycol-bis-(β-aminoethyl ether)N,N′-tetraacetic acid, showed the ability to accumulate H+ ions upon addition of ATP, KCl, and valinomycin. The membranes were largely impermeable to K+ and Cl?. In contrast, the rat membranes prepared without the Ca2+ chelator lost the ability to develop a pH gradient because of the membrane leakiness to H+. A majority of these membrane vesicles became also permeable to K+. We suggest that the calcium chelator preserved the gastric membrane permeability barrier during isolation by inhibiting various Ca2+-dependent phospholipases in rat gastric mucosa.  相似文献   

10.
Oscillations of H+ secretion rate, active net charge transport measured as short-circuit current and transmucosal electric potential difference with a regular frequency of one period in 45 min appeared spontaneously in the isolated frog gastric mucosa. Similar oscillations were triggered by the addition of histamine at 45-min intervals.The spontaneous oscillations and the continuatino of histamine triggered oscillations after cessation of histamine administration indicates that there was a component of slow inherent rhytmicity in the mucosa. No oscillations were obtained when a small transmucosal gradient of Cl? was used.With the histamine-triggered oscillations the H+ secretion rate was always 180° out of phase with the short-circuit current and the potential difference. This supports the hypothesis of an electrogenic mechanism for active transport of H+ in the mucosa that can function at least partially independently of that for Cl?.  相似文献   

11.
Measurements with microelectrodes implanted into Samanea saman (Jacq.) Merrill leaf pulvini showed that membrane potentials were rhythmically sensitive to the application of sucrose. The magnitude of the electrical depolarizations induced by sucrose were dependent on the concentration of H+ in the medium, yet changes in [H+] alone did not greatly affect the potential. During sucrose-induced electrical depolarization, there was a slight increase in the pH of the bathing medium; both effects were abolished by high levels of K+, Na+ or Ca2+ in the medium. These observations indicate that H+ enter the cells by some cooperative action with sucrose. A model of H+-substrate cotransport is proposed in which a sugar carrier in the membrane is made more permeable by the attachment of a proton. The rhythmic nature of this proposed cotransport may be related to circadian leaf-movements in this plant.  相似文献   

12.
Most plant species form symbioses with arbuscular mycorrhizal (AM) fungi, which facilitate the uptake of mineral nutrients such as phosphate from the soil. Several transporters, particularly proton-coupled phosphate transporters, have been identified on both the plant and fungal membranes and contribute to delivering phosphate from fungi to plants. The mechanism of nutrient exchange has been studied in plants during mycorrhizal colonization, but the source of the electrochemical proton gradient that drives nutrient exchange is not known. Here, we show that plasma membrane H+-ATPases that are specifically induced in arbuscule-containing cells are required for enhanced proton pumping activity in membrane vesicles from AM-colonized roots of rice (Oryza sativa) and Medicago truncatula. Mutation of the H+-ATPases reduced arbuscule size and impaired nutrient uptake by the host plant through the mycorrhizal symbiosis. Overexpression of the H+-ATPase Os-HA1 increased both phosphate uptake and the plasma membrane potential, suggesting that this H+-ATPase plays a key role in energizing the periarbuscular membrane, thereby facilitating nutrient exchange in arbusculated plant cells.  相似文献   

13.
Voltage-dependent H+ (Hv) channels mediate proton conduction into and out of cells under the control of membrane voltage. Hv channels are unusual compared to voltage-dependent K+, Na+, and Ca2+ channels in that Hv channel genes encode a voltage sensor domain (VSD) without a pore domain. The H+ currents observed when Hv channels are expressed heterologously suggest that the VSD itself provides the pathway for proton conduction. In order to exclude the possibility that the Hv channel VSD assembles with an as yet unknown protein in the cell membrane as a requirement for H+ conduction, we have purified Hv channels to homogeneity and reconstituted them into synthetic lipid liposomes. The Hv channel VSD by itself supports H+ flux.  相似文献   

14.
Summary Models of epithelial salt secretion, involving secondary active transport of Cl [9], locate the K+ conductance of the plasma membrane exclusively in the basolateral membrane, although there is considerable experimental evidence to show that many secretory epithelia do have a significant apical K+ conductance. We have used an equivalent circuit model to examine the effect of an apical K+ conductance on the composition and flow rate of the fluid secreted by an epithelium in which secretion is driven by the secondary active transport of Cl. The parameters of the model were chosen to be similar to those measured in the dog tracheal mucosa when stimulated with adrenaline to secrete. We find that placing a K+ conductance in the apical membrane can actually enhance secretion provided that proportion of the total cell K+ conductance in the apical membrane is not greater than about 60%, the enabling effect on secretion being maximal when the proportion is around 10–20%. We also find that even when the entire cell K+ conductance is located in the apical membrane, the secreted fluid remains relatively Na+ rich. Analysis of the sensitivity of model behavior to the choice of values for the parameters shows that the effects of an apical K+ conductance are enhanced by increasing the ratio of the paracellular resistance to the transcellular resistance.  相似文献   

15.
Summary The pH-stat technique has been used to measure H+ fluxes in gastric mucosa and urinary bladder in vitro while keeping mucosal pH constant. We now report application of this method in renal tubules. We perfused proximal tubules with double-barreled micropipettes, blocked luminal fluid columns with oil and used a double-barreled Sb/reference microelectrode to measure pH, and Sb or 1n HC1-filled microelectrodes to inject OH or H+ ions into the tubule lumen. By varying current injection, pH was kept constant at adjustable levels by an electronic clamping circuit. We could thus obtain ratios of current (nA) to pH change (apparent H+-ion conductance). These ratios were reduced after luminal 10–4 m acetazolamide, during injection of OH, but they increased during injection of H+. The point-like injection source causes pH to fall off with distance from the injecting electrode tip even in oil-blocked segments. Therefore, a method analogous to cable analysis was used to obtain H+ fluxes per cm2 epithelium. The relation betweenJ H + and pH gradient showed saturation kinetics of H fluxes, both during OH and H+ injection. This kinetic behavior is compatible with inhibition ofJ H by luminal H+. It is also compatible with dependence on Na+ and H+ gradients of a saturable Na/H exchanger. H+-ion back-flux into the tubule lumen also showed saturation kinetics. This suggests that H+ flow is mediated by a membrane component, most likely the Na+–H+ exchanger.  相似文献   

16.
The ATP4A encodes α subunit of H+, K+-ATPase that contains catalytic sites of the enzyme forming pores through cell membrane which allows the ion transport. H+, K+-ATPase is a membrane bound P-type ATPase enzyme which is found on the surface of parietal cells and uses the energy derived from each cycle of ATP hydrolysis that can help in exchanging ions (H+, K+ and Cl?) across the cell membrane secreting acid into the gastric lumen. The 3-D model of α-subunit of H+, K+-ATPase was generated by homology modeling. It was evaluated and validated on the basis of free energies and amino acid residues. The inhibitor binding amino acid active pockets were identified in the 3-D model by molecular docking. The two drugs Omeprazole and Rabeprazole were found more potent interactions with generated model of α-subunit of H+, K+-ATPase on the basis of their affinity between drug–protein interactions. We have generated ATP4A gene regulatory networks for interactions with other proteins which involved in regulation that can help in fine-tuning of proton pump and ion channels. These findings provide a new dimension for discovery and development of proton pump inhibitors and gene regulation of the ATPase. It can be helpful in better understanding of human physiology and also using synthetic biology strategy for reprogramming of parietal cells for control of gastric ulcers.  相似文献   

17.
Transport activity of the hog gastric (H+ + K+)-ATPase system was measured either as the formation of a proton gradient using the dye probe acridine orange or as the formation of a proton diffusion potential using the cyanine dye 3,3′-diethyloxdicarbocyanine iodide in the presence of the protonophore tetrachlorosalicylanilide. The development of these gradients has been compared in K+ media in the presence of either Cl? or SO42? as the anionic species. This comparison of proton diffusion potential formation to proton gradient formation has been used to demonstrate that a Cl? conductance in this vesicular system results from limited enzymic digestion with either trypsin or α-chymotrypsin and from the ageing process itself. The possible significance of this finding is discussed.  相似文献   

18.
A number of organic molecules were found to increase the Na+ permeability of the Na+-selective membrane in frog skin epithelium quickly and reversibly when added to the outer bathing solution. The most effective was benzoylimidazole-guanidine. This substance stimulates the Na+ current by preventing the decrease of Na+ permeability which is normally caused by Na+ at the outer surface of the Na+-selective membrane.  相似文献   

19.
H+ conductance in de-energized cells of Clostridium thermoaceticum and Clostridium acetobutylicum was determined from the rate of realkalinization of the medium after an acid pulse. In both organisms, cell membrane proton permeability was increased by fermentation end products and ionophores. In C. thermoaceticum, H+ conductance was increased by Na+ ions compared with K+ as counterions. In these cells, addition of Na+, but not K+, elicited efflux of H+; H+ efflux was stimulated by SCN and decreased by various ionophores. We concluded that C. thermoaceticum possesses an electrogenic Na+/H+ antiporter. In contrast, C. acetobutylicum cells did not have an electrogenic Na+/H+ antiporter.  相似文献   

20.
A. L. Moore  S. B. Wilson 《Planta》1978,141(3):297-302
The permeability of the inner membrane of turnip mitochondria to H+ and OH- ions has been investigated using an acid pulse technique. The rate of decay of a H+ pulse across the inner membrane is exponential having first-order kinetics and gives t 1/2 values of approx 54 s at neutral pH and at 25° C. Valinomycin or 1799 alone have little effect on t 1/2 values, whereas in combination, values of <15 s are observed. Nigericin produces a similar effect. The effective proton conductance of the inner membrane near pH 7 at 25° C is 0.27 nmol H+ min-1 mg protein-1 mV-1. The results suggest that at neutral pH, the inner membrane of plant mitochondria is relatively impermeable to H+ and OH- ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号