首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor angiogenesis facilitates tumor metastasis and allows malignant tissues to grow beyond a diffusion limited size. It is a complex process that requires endothelial cells to execute specific steps during different phases. miRNAs are small non-coding RNAs that act as molecular switches to redirect the expression profile of a cell. Evidence is emerging that miRNAs are important players in endothelial cell biology and tumor angiogenesis. In this review we summarize the available data of miRNA expression in the endothelium. In addition, we describe the current knowledge regarding the function of miRNAs in endothelial cell biology. Finally, we discuss the potential applications of miRNA based treatment strategies in angiostatic cancer therapy.  相似文献   

2.
3.
4.
MicroRNA-143 and -145 in colon cancer   总被引:9,自引:0,他引:9  
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs (20-22 nucleotides) that negatively regulate gene expression at the translational level by base pairing to the 3' untranslated region of target messenger RNAs. More than 400 miRNAs have been identified in humans and are evolutionally conserved from plants to animals. It has been revealed that miRNAs regulate various biological processes, such as development, cell differentiation, cell proliferation, and cell death. It is predicted that 30% of protein-encoding genes are regulated by miRNAs. Inappropriate expression of miRNAs has been found in cancer. Especially, the expression level of miRNAs that act like anti-oncogenes is frequently reduced in cancers because of chromosome aberrations. In addition, since the processing of miRNAs has been characterized to be enzymatic in nature, the expression levels of miRNAs are closely associated with the activity and levels of such enzymes. In this review, we discuss recent remarkable advances in miRNA biogenesis, bio-networking involving miRNAs, and their roles in carcinogenesis. Further, we discuss the expression of miRNA-143 and -145 in colon cancer and their roles in carcinogenesis. The available data suggest that miRNAs would be potentially useful as diagnostic and therapeutic tools.  相似文献   

5.
6.
7.
Non‐coding RNAs (ncRNAs) have been emerging players in cell development, differentiation, proliferation and apoptosis. Based on their differences in length and structure, they are subdivided into several categories including long non‐coding RNAs (lncRNAs >200nt), stable non‐coding RNAs (60‐300nt), microRNAs (miRs or miRNAs, 18‐24nt), circular RNAs, piwi‐interacting RNAs (26‐31nt) and small interfering RNAs (about 21nt). Therein, miRNAs not only directly regulate gene expression through pairing of nucleotide bases between the miRNA sequence and a specific mRNA that leads to the translational repression or degradation of the target mRNA, but also indirectly affect the function of downstream genes through interactions with lncRNAs and circRNAs. The latest studies have highlighted their importance in physiological and pathological processes. MiR‐374 family member are located at the X‐chromosome inactivation center. In recent years, numerous researches have uncovered that miR‐374 family members play an indispensable regulatory role, such as in reproductive disorders, cell growth and differentiation, calcium handling in the kidney, various cancers and epilepsy. In this review, we mainly focus on the role of miR‐374 family members in multiple physiological and pathological processes. More specifically, we also summarize their promising potential as novel prognostic biomarkers and therapeutic targets from bench to bedside.  相似文献   

8.
9.
10.
11.
12.
13.
Micro‐RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end‐stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal‐Network, miRNA‐GO‐Network and miRNA‐Gene‐Network. According to the fold change in the network and probability values in the microarray cohort, RT‐PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR‐340 achieved statistically significant. miR‐340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR‐340 in cultured neonatal rat cardiomyocytes to identify whether miR‐340 plays a determining role in the progression of heart failure. ANP, BNP and caspase‐3 were significantly elevated in the miR‐340 transfected cells compared with controls (P < 0.05). The cross‐sectional area of overexpressing miR‐340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end‐stage heart failure and identified miR‐340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.  相似文献   

14.
Rhabdomyosarcoma (RMS) is the most common of the soft tissue sarcomas with resultant high morbidity, frequently occuring in paediatric patients and young adults. While the molecular basis of RMS has received considerable attention, exact mechanisms underlying its development and metastasis remain unclear. MicroRNAs (miRNAs) are endogenously expressed small non‐coding RNAs that negatively regulate gene expression via translational inhibition or mRNA degradation. Deregulated expression of miRNA has been implicated in initiation, progression, and metastasis of RMS. miRNAs have emerged as key regulators of several physiological and pathophysiological processes and have opened new avenues for diagnosis and treatment of RMS. This review summarizes deregulation and functional roles of miRNAs in RMS and their potential applications for diagnosis, prognosis and treatment of this malignancy. As a rapidly evolving field in basic and translational medicine, it is hopeful that miRNA research will ultimately improve management of RMS.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号