首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (= 0.277–0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (ØPT = 0.261, corrected = 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) (= 0.076–0.117) was moderate in C  sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.  相似文献   

2.
The population structure of cloudberry (Rubus chamaemorus L.), collected from Krkonose Mountains (the Czech Republic), continental Norway and Spitsbergen, was examined using microsatellite analyses (SSR). Among 184 individuals, 162 different genotypes were identified. The overall unbiased gene diversity was high (). A high level of genetic differentiation among populations (FST = 0.45; p < .01) indicated restricted gene flow between populations. Using a Bayesian approach, six clusters were found which represented the genetic structure of the studied cloudberry populations. The value of correlation index between genetic and geographical distances (r = .44) indicates that gene flow, even over a long distance, could exist. An exact test of population differentiation showed that Rubus chamaemorus populations from regions (Krkonose Mountains, continental Norway and Spitsbergen) are differentiated although some individuals within populations share common alleles even among regions. These results were confirmed by AMOVA, where the highest level of diversity was found within populations (70.8%). There was no difference between 87 pairs of populations (18.7%) mostly within cloudberry populations from continental Norway and from Spitsbergen. Based on obtained results, it is possible to conclude that Czech and Norwegian cloudberry populations are undergoing differentiation, which preserves unique allele compositions most likely from original populations during the last glaciation period. This knowledge will be important for the creation and continuation of in situ and ex situ conservation of cloudberry populations within these areas.  相似文献   

3.
The effect of chitosan (0.1 mol/L) combined with sodium silicate (100 mmol/L) treatment on Alternaria rot caused by Alternaria alternata in postharvest jujube fruit (Ziziphus jujuba Mill. cv. Dongzao) was studied. The results showed that chitosan combined with sodium silicate treatment significantly reduced the lesion diameter, decay incidence, red index and weight loss of jujube fruit compared with control samples. Combining treatment increased the ascorbic acid, flavonoids, total phenolic compounds and lignin content. The level of superoxide anion () and hydrogen peroxide of treated samples was also increased compared with the control samples. Meanwhile, the activities of phenylalanine ammonia lyase, polyphenol oxidase, superoxide dismutase, peroxidase, chitinase and β‐1,3‐glucanase were also accumulated in treated jujube samples, while the activity of catalase markedly decreased. These results indicated that chitosan combined with sodium silicate treatment could induce the disease resistance of postharvest jujube. Therefore, coating postharvest jujube using chitosan combined with sodium silicate could promise as a novel method for preventing the disease infection of postharvest jujube.  相似文献   

4.
《Fungal biology》2022,126(4):267-276
Phytophthora palmivora is the causal agent of cocoa black pod disease, one of the primary diseases of cocoa in Indonesia. A better understanding of P. palmivora population genetics is needed to aid the development of relevant disease management strategies. This study is the first population genetic study of P. palmivora in Indonesia using microsatellite markers based on the alleles genotyping method. The microsatellite markers were used to determine the genotype of 44 P. palmivora isolates from Sulawesi (24) and Java (20) islands. The total number of observed multilocus genotypes (MLG) from both populations was 34. The genotypic diversity of P. palmivora from Sulawesi (2.90; 16.0; 0.938) and Java (2.76; 14.3; 0.930) islands was high as seen from Shannon's diversity index (H), Stoddart and Taylor's Index (G), and Simpson's Index (λ) respectively. Evenness and Nei's unbiased gene diversity exhibited similarly high levels from both populations. The linkage disequilibrium test indicated that sexual recombination occurred in the Java population (P = 0.312). Analysis of molecular variance (AMOVA) and Bayesian clustering revealed five genetic clusters, and isolates from both islands were evenly distributed across the five gene clusters. All genetic diversity was from within individuals. P. palmivora from Sulawesi and Java showed a high genotypic diversity but a lack of genetic differentiation among populations (Fst = 0.006). Both populations formed one highly diverse group. Minimum spanning network analysis showed no particular grouping of MLGs, and shared MLGs from both populations indicated long-distance migration of P. palmivora facilitated by human activities.  相似文献   

5.
Maintaining effective immune response is an essential factor in the survival of small populations. One of the most important immune gene regions is the highly polymorphic major histocompatibility complex (MHC). We investigated how a population bottleneck and recovery have influenced the diversity and selection in three MHC class II loci, DLA‐DRB1, DLA‐DQA1 and DLA‐DQB1, in the Finnish wolf population. We studied the larger Russian Karelian wolf population for comparison and used 17 microsatellite markers as reference loci. The Finnish and Karelian wolf populations did not differ substantially in their MHC diversities ( = 0.047, P = 0.377), but differed in neutral microsatellite diversities ( = 0.148, P = 0.008). MHC allele frequency distributions in the Finnish population were more even than expected under neutrality, implying balancing selection. In addition, an excess of nonsynonymous compared to synonymous polymorphisms indicated historical balancing selection. We also studied association between helminth (Trichinella spp. and Echinococcus canadensis) prevalence and MHC diversity at allele and SNP level. MHC‐heterozygous wolves were less often infected by Trichinella spp. and carriers of specific MHC alleles, SNP haplotypes and SNP alleles had less helminth infections. The associated SNP haplotypes and alleles were shared by different MHC alleles, which emphasizes the necessity of single‐nucleotide‐level association studies also in MHC. Here, we show that strong balancing selection has had similar effect on MHC diversities in the Finnish and Russian Karelian wolf populations despite significant genetic differentiation at neutral markers and small population size in the Finnish population.  相似文献   

6.
Developing genomic insights is challenging in nonmodel species for which resources are often scarce and prohibitively costly. Here, we explore the potential of a recently established approach using Pool‐seq data to generate a de novo genome assembly for mining exons, upon which Pool‐seq data are used to estimate population divergence and diversity. We do this for two pairs of sympatric populations of brown trout (Salmo trutta): one naturally sympatric set of populations and another pair of populations introduced to a common environment. We validate our approach by comparing the results to those from markers previously used to describe the populations (allozymes and individual‐based single nucleotide polymorphisms [SNPs]) and from mapping the Pool‐seq data to a reference genome of the closely related Atlantic salmon (Salmo salar). We find that genomic differentiation (FST) between the two introduced populations exceeds that of the naturally sympatric populations (FST = 0.13 and 0.03 between the introduced and the naturally sympatric populations, respectively), in concordance with estimates from the previously used SNPs. The same level of population divergence is found for the two genome assemblies, but estimates of average nucleotide diversity differ ( ≈ 0.002 and  ≈ 0.001 when mapping to S. trutta and S. salar, respectively), although the relationships between population values are largely consistent. This discrepancy might be attributed to biases when mapping to a haploid condensed assembly made of highly fragmented read data compared to using a high‐quality reference assembly from a divergent species. We conclude that the Pool‐seq‐only approach can be suitable for detecting and quantifying genome‐wide population differentiation, and for comparing genomic diversity in populations of nonmodel species where reference genomes are lacking.  相似文献   

7.
Clonal reproduction is associated with the incidence of polyploidy in flowering plants. This pattern may arise through selection for increased clonality in polyploids compared to diploids to reduce mixed‐ploidy mating. Here, we test whether clonal reproduction is greater in tetraploid than diploid populations of the mixed‐ploidy plant, Chamerion angustifolium, through an analysis of the size and spatial distribution of clones in natural populations using AFLP genotyping and a comparison of root bud production in a greenhouse study. Natural tetraploid populations (N = 5) had significantly more AFLP genotypes ( = 10.8) than diploid populations ( = 6.0). Tetraploid populations tended to have fewer ramets per genotype and fewer genotypes with >1 ramet. In a spatial autocorrelation analysis, ramets within genotypes were more spatially aggregated in diploid populations than in tetraploid populations. In the greenhouse, tetraploids allocated 90.4% more dry mass to root buds than diploids, but tetraploids produced no more root buds and 44% fewer root buds per unit root mass than diploids. Our results indicate that clonal reproduction is significant in most populations, but tetraploid populations are not more clonal than diploids, nor are their clones more spatially aggregated. As a result, tetraploids may be less sheltered from mixed‐ploidy mating and diploids more exposed to inbreeding, the balance of which could influence the establishment of tetraploids in diploid populations.  相似文献   

8.
Population growth typically involves range expansion and establishment of new breeding sites, while the opposite occurs during declines. Although density dependence is widely invoked in theoretical studies of emigration and colonization in expanding populations, few empirical studies have documented the mechanisms. Still fewer have documented the direction and mechanisms of individual transfer in declining populations. Here, we screen large numbers of pups sampled on their natal rookeries for variation in mtDNA (n = 1106) and 16 microsatellite loci (n = 588) and show that new Steller sea lion breeding sites did not follow the typical paradigm and were instead colonized by sea lions from both a declining (Endangered) population and an increasing population. Dispersing individuals colonized rookeries in the distributional hiatus between two evolutionarily distinct ( = 0.222,  = 0.053, = 2) metapopulations recently described as separate subspecies. Hardy–Weinberg, mixed‐stock and relatedness analysis revealed levels of interbreeding on the new rookeries that exclude (i) assortative mating among eastern and western forms, and (ii) inbreeding avoidance as primary motivations for dispersal. Positive and negative density dependence is implicated in both cases of individual transfer. Migration distance limits, and conspecific attraction and performance likely influenced the sequence of rookery colonizations. This study demonstrates that resource limitation may trigger an exodus of breeding animals from declining populations, with substantial impacts on distribution and patterns of genetic variation. It also revealed that this event is rare because colonists dispersed across an evolutionary boundary, suggesting that the causative factors behind recent declines are unusual or of larger magnitude than normally occur.  相似文献   

9.
The Chestnut‐banded Plover Charadrius pallidus is a Near‐Threatened shorebird species endemic to mainland Africa. We examined levels of genetic differentiation between its two morphologically and geographically distinct subspecies, C. p. pallidus in southern Africa (population size 11 000–16 000) and C. p. venustus in eastern Africa (population size 6500). In contrast to other plover species that maintain genetic connectivity over thousands of kilometres across continental Africa, we found profound genetic differences between remote sampling sites. Phylogenetic network analysis based on four nuclear and two mitochondrial gene regions, and population genetic structure analyses based on 11 microsatellite loci, indicated strong genetic divergence, with 2.36% mitochondrial sequence divergence between individuals sampled in Namibia (southern Africa) and those of Kenya and Tanzania (eastern Africa). This distinction between southern and eastern African populations was also supported by highly distinct genetic clusters based on microsatellite markers (global FST = 0.309,  = 0.510, D = 0.182). Behavioural factors that may promote genetic differentiation in this species include habitat specialization, monogamous mating behaviour and sedentariness. Reliance on an extremely small number of saline lakes for breeding and limited dispersal between populations are likely to promote reproductive and genetic isolation between eastern and southern Africa. We suggest that the two Chestnut‐banded Plover subspecies may warrant elevation to full species status. To assess this distinction fully, additional sample collection will be needed, with analysis of genetic and phenotypic traits from across the species’ entire breeding range.  相似文献   

10.
The relationship between initial population densities (Pi) of Meloidogyne hapla on growth of three rose rootstocks (Rosa corymbifera ‘Laxa’, Rmultiflora and Rcanina ‘Inermis’) and nematode population development was studied. Each plant species was inoculated with ranges of nematode densities of 0, 0.062, 0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 32, 64 and 128 second‐stage juvenile/g soil and were allowed to grow for 9 weeks. Seinhorst yield model was fitted to total fresh biomass data of the rootstocks. The tolerance limits (T) were 0.04, 0.09 and 0.01 J2/g soil and the minimum yield (m) 0.65, 0.47 and 0.43 for Rcorymbifera ‘Laxa’, Rmultiflora and Rcanina ‘Inermis’, respectively. The reproductive factor (Pf/Pi) was highest at low initial nematode densities for all rootstocks and then decreased to below maintenance level with increasing initial population densities. Root gall severity consistently increased with initial nematode population density. Furthermore, number of root galling showed a strong positive relationship with final nematode population per gram root fresh weight. The relation between Pi and Pf was also fitted to the Seinhorst population model (Pf = (M*Pi)/Pi M/a). Rosa multiflora supported the population of Mhapla to a maximum population density (M) of 27.53 J2/g soil with an estimated average maximum multiplication rate (a) of 24.39. For R. corymbifera ‘Laxa’ and R. canina, the maximum multiplication rate was 4.34 and 3.62 and the maximum population density 6.08 and 4.78 J2/g dry soil, respectively. Hence, it was demonstrated that all three rootstocks were susceptible to even low initial nematode densities and therefore are considered good hosts for M. hapla.  相似文献   

11.
Phytophthora capsici is an important oomycete pathogen threatening the vegetable production in China, but very little is known about its population structure. The objective of the present study was to evaluate the genetic diversity of 49 P. capsici isolates obtained from 2007 to 2014 at nine provincial locations in China. Isolates were assessed for mating type, metalaxyl resistance and simple sequence repeat (SSR) genotype. Mating‐type analyses of the isolates showed that both mating types were present in all of the sampled production regions, and the mating‐type frequency in the total Chinese population did not deviate significantly from a 1:1 ratio. Responses of isolates to the fungicide metalaxyl indicated the presence of intermediate resistance to metalaxyl among the field population. A universal fluorescent labelling method was adapted in this study to improve the efficiency of SSR genotyping. Microsatellite genotyping of the isolates using seven SSR markers revealed 44 unique multilocus genotypes. Genetic analyses indicated the existence of two genetic clusters within Chinese P. capsici collection. Clonal reproduction may play a more prominent role in Yunnan Province, but non‐existence of repeated genotypes and existence of both mating types throughout all regions suggest outcrossing and sexual recombination likely play an important role in the overall epidemiology in China. Future studies would include expanded scale sampling at single regions over multiple years to better define the genetic diversity of P. capsici in China.  相似文献   

12.
Half maximal (50%) effective concentration (EC50) values are widely used to express fungicide potency and sensitivity of plant pathogens. This study explored the necessity of logarithmic transformation for statistical analysis of EC50 values. The results demonstrated that without logarithmic transformation, none of the five sets of epoxiconazole EC50 data (n = 26–33) against Sclerotinia sclerotiorum fitted a normal distribution. But after logarithmic transformation, four of the five datasets became normally distributed. Of the five sets of pyraclostrobin EC50 data (n = 29–32), only one dataset fitted a normal distribution. After logarithmic transformation, four datasets became normally distributed. Logarithmic transformation transformed the heterogeneity of variance across the five sets of epoxiconazole EC50 data to homogeneity but failed to improve the heterogeneity of variance across the five sets of pyraclostrobin EC50 data. For 150 isolates' EC50 values to epoxiconazole and 153 isolates' EC50 values to pyraclostrobin, the intervals of arithmetic means ± standard deviations (SD) covered 85.3% and 90.2% of data points, respectively, whereas the intervals of geometric means (*) multiplied/divided by the multiplicative SD (S*) covered 69.3% and 70.9% of data points, respectively, which approximated the theoretical value of 68.3%. Distribution normality and homogeneity of variance are prerequisites for analysis of variance (anova ) and the two parameters could be improved by logarithmic transformation, therefore, power and efficiency of statistical tests on EC50 data will be greatly enhanced by this kind of transformation.  相似文献   

13.
One of the most prominent manifestations of the ongoing climate warming is the retreat of glaciers and ice sheets around the world. Retreating glaciers result in the formation of new ponds and lakes, which are available for colonization. The gradual appearance of these new habitat patches allows us to determine to what extent the composition of asexual Daphnia (water flea) populations is affected by environmental drivers vs. dispersal limitation. Here, we used a landscape genetics approach to assess the processes structuring the clonal composition of species in the D. pulex species complex that have colonized periglacial habitats created by ice‐sheet retreat in western Greenland. We analysed 61 populations from a young (<50 years) and an old cluster (>150 years) of lakes and ponds. We identified 42 asexual clones that varied widely in spatial distribution. Beta‐diversity was higher among older than among younger systems. Lineage sorting by the environment explained 14% of the variation in clonal composition whereas the pure effect of geographical distance was very small and statistically insignificant ( = 0.010, P = 0.085). Dispersal limitation did not seem important, even among young habitat patches. The observation of several tens of clones colonizing the area combined with environmentally driven clonal composition of populations illustrates that population assembly of asexual species in the Arctic is structured by environmental gradients reflecting differences in the ecology of clones.  相似文献   

14.
15.
The partial dominance model for the evolution of inbreeding depression predicts that tetraploids should exhibit less inbreeding depression than their diploid progenitors. We tested this prediction by comparing the magnitude of inbreeding depression in tetraploid and diploid populations of the herbaceous perennial Epilobium angustifolium (Onagraceae). Inbreeding depression was estimated in the greenhouse for three tetraploid and two diploid populations at four life stages. The mating system of a tetraploid population was estimated and compared to a previous estimate for diploids. Tetraploids showed less inbreeding depression than diploids at all life history stages, and these differences were significant for seed-set and cumulative fitness, but not for germination, survival, or plant dry mass at nine weeks. This result suggests that the genetic basis of inbreeding depression may differ among life stages. The primary selfing rate of the tetraploid population was r = 0.43, which is nearly identical to that of a diploid population (r = 0.45), indicating that differences in inbreeding depression between diploids and tetraploids are probably not due to differences in the mating system. Cumulative inbreeding depression, calculated from the four life history stages, was significantly higher for diploids () than for tetraploids (), supporting the partial dominance model of inbreeding depression.  相似文献   

16.
The historical and contemporary population genetic structure of the chickpea Ascochyta blight pathogen, Ascochyta rabiei (teleomorph: Didymella rabiei), was determined in the US Pacific Northwest (PNW) using 17 putative AFLP loci, four genetically characterized, sequence-tagged microsatellite loci (STMS) and the mating type locus (MAT). A single multilocus genotype of A. rabiei (MAT1-1) was detected in 1983, which represented the first recorded appearance of Ascochyta blight of chickpea in the PNW. During the following year many additional alleles, including the other mating type allele (MAT1-2), were detected. By 1987, all alleles currently found in the PNW had been introduced. Highly significant genetic differentiation was detected among contemporary subpopulations from different hosts and geographical locations indicating restricted gene flow and/or genetic drift occurring within and among subpopulations and possible selection by host cultivar. Two distinct populations were inferred with high posterior probability which correlated to host of origin and date of sample using Bayesian model-based population structure analyses of multilocus genotypes. Allele frequencies, genotype distributions and population assignment probabilities were significantly different between the historical and contemporary samples of isolates and between isolates sampled from a resistance screening nursery and those sampled from commercial chickpea fields. A random mating model could not be rejected in any subpopulation, indicating the importance of the sexual stage of the fungus both as a source of primary inoculum for Ascochyta blight epidemics and potentially adaptive genotypic diversity.  相似文献   

17.
Genetic diversity and population structure among 29 isolates of Ascochyta rabiei (AR) obtained from diseased chickpea plants in six different geographical origins in Iran was characterized by MAT and rep‐PCR (BOX/ERIC/REP) markers. Both mating types were found in all six populations, and the frequencies of mating types were variable between populations. The majority of the isolates belonged to Mat1‐1 (58.12%) with the remainder (41.88%) being Mat1‐2. A dendrogram was calculated with Jaccard's similarity coefficients with unweighted pair group method clustering (UPGMA) for the combination of rep‐PCR results, AR strains were differentiated into four clusters (A–D) at 60% similarity level. ERIC, REP and BOX showed a total of 19, 37 and 24 alleles per locus, respectively. Gene diversity (He) and Shannon's information index (I) were the highest in the REP (He = 0.82; I = 2.11), while the lowest values were estimated for the ERIC (He = 0.42; I = 1.3). Our result showed that among the three techniques studied, REP‐PCR produced the most complex amplified banding patterns, which reflected a high degree of diversity among the Iranian AR strains. ERIC‐PCR was the least discriminating method, and BOX‐PCR was intermediate. To the best our knowledge, this is first study of assessment of genetic diversity of AR isolates by rep‐PCR markers.  相似文献   

18.
The population structure of the mycophagous beetle Phalacrus substriatus is characterized by many small, local populations interconnected by migration over a small spatial scale (10 × 75 m2). Each local P. substriatus population has a relatively short expected persistence time, but persistence of the species occurs due to a balance between frequent local extinctions and recolonizations. This nonequilibrium population structure can have profound effects on how the genetic variation is structured between and within populations. Theoretical models have stated that the genetic differentiation among local populations will be enhanced relative to an island model at equilibrium if the number of colonizers is less than approximately twice the number of migrants among local populations. To study these effects, a set of 50 local P. substriatus populations were surveyed over a four-year period to record any naturally occurring extinctions and recolonizations. The per population colonization and extinction rate were 0.237 and 0.275, respectively. Mark-recapture techniques were used to estimate a number of demographic parameters: local population size (N = 11.1), migration rate , number of colonizers (k = 4.0), and the probability of common origin of colonizers (φ = 0.5). The theoretically predicted level of differentiation among local populations (measured as Wright's FST) was 0.070. Genetic data obtained from an electrophoretic survey of seven polymorphic loci gave an estimated degree of differentiation of 0.077. There was thus a good agreement between the empirical results and the theoretical predictions. Young populations had significantly higher levels of differentiation than old, more established populations . The extinction-recolonization dynamics resulted in an overall increase in the genetic differentiation among local populations by c. 40%. The global effective population size was also reduced by c. 55%. The results give clear evidence to how nonequilibrium processes shape the genetic structure of populations.  相似文献   

19.
Epiphytic plants occupy three-dimensional space, which allows more individuals to be closely clustered spatially than is possible for populations occupying two dimensions. The unique characteristics of epiphytes can act in concert to influence the fine-scale genetic structure of their populations which can, in turn, influence mating patterns and other population phenomena. Three large populations of Laelia rubescens (Orchidaceae) in the Costa Rican seasonal dry forest were sampled at two levels of intensity to determine: (i) whether individual clusters contain more than one genotype, and (ii) the spatial distribution and fine-scale genetic structure of genotypes within populations. Samples were assayed for their multilocus allozyme genotypes and spatial autocorrelation analyses were performed. High levels of genetic diversity, high genotypic diversity and low among-population variation were found. In the larger clusters, multiple genets per cluster were common with discrete clusters containing up to nine genotypes. Spatial autocorrelation analyses indicated significant positive genetic structure at distances of 相似文献   

20.
The population structure of the fungal pathogen Pyrenophora teres, collected mainly from different regions of the Czech and Slovak Republics, was examined using a microsatellite analyses (SSR). Among 305 P. teres f. teres (PTT) and 82 P. teres f. maculata (PTM) isolates that were collected, the overall gene diversity was similar (? = 0.12 and ? = 0.13, respectively). A high level of genetic differentiation (FST = 0.46; P < 0.001) indicated the existence of population structure. Nine clusters that were found using a Bayesian approach represent the genetic structure of the studied P. teres populations. Two clusters consisted of PTM populations; PTT populations formed another seven clusters. An exact test of population differentiation confirmed the results that were generated by Structure. There was no difference between naturally infected populations over time, and genetic distance did not correlate with geographical distance. The facts that all individuals had unique multilocus genotypes and that the hypothesis of random mating could not be rejected in several populations or subpopulations serve as evidence that a mixed mating system plays a role in the P. teres life cycle. Despite the fact that the genetic differentiation value between PTT and PTM (FST = 0.30; P < 0.001) is lower than it is between the populations within each form (FST = 0.40 (PTT); FST = 0.35 (PTM); P < 0.001) and that individuals with mixed PTT and PTM genomes were found, the two forms of P. teres form genetically separate populations. Therefore, it can be assumed that these populations have most likely undergone speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号