首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose that some of the critical molecules involved in the transfer of melanosomes from melanocytes to keratinocytes include plasma membrane lectins and their glycoconjugates. To investigate this mechanism, co‐cultures of human melanocytes and keratinocytes derived from neonatal foreskins were established. The process of melanosome transfer was assessed by two experimental procedures. The first involved labeling melanocyte cultures with the fluorochrome CFDA. Labeled melanocytes were subsequently co‐cultured with keratinocytes, and the transfer of fluorochrome assessed visually by confocal microscopy and quantitatively by flow cytometry. The second investigative approach involved co‐culturing melanocytes with keratinocytes, and processing the co‐cultures after 3 days for electron microscopy to quantitate the numbers of melanosomes in keratinocytes. Results from these experimental approaches indicate significant transfer of dye or melanosomes from melanocytes to keratinocytes that increased with time of co‐culturing. Using these model systems, we subsequently tested a battery of lectins and neoglycoproteins for their effect in melanosome transfer. Addition of these selected molecules to co‐cultures inhibited transfer of fluorochrome by approximately 15–44% as assessed by flow cytometry, and of melanosomes by 67–93% as assessed by electron microscopy. Therefore, our results suggest the roles of selected lectins and glycoproteins in melanosome transfer to keratinocytes in the skin.  相似文献   

2.
《Cellular signalling》2014,26(4):716-723
Transfer of melanin-containing melanosomes from melanocytes to neighboring keratinocytes results in skin pigmentation. Pharmacological modulation of melanosomal transfer has recently gained much attention as a strategy for modifying normal or abnormal pigmentation. In this study, while investigating the impact of pyridinyl imidazole (PI) compounds, a class of p38 MAPK inhibitors, on melanocyte differentiation we observed that some, but not all PIs interfere with the physiological melanosome sorting producing a strong retention of melanin in the intracellular compartment associated with a general reduction of melanin synthesis. Electron microscopy studies illustrated an accumulation of melanosomes inside melanocytes with enrichment in immature melanosome at stages II and III at the end of dendrites. We identified cyclin G-associated kinase GAK, a protein expressed ubiquitously in various tissues, as the off-target responsible of intracellular melanin accumulation and we report evidence that reduced GAK-dependent cathepsin maturation is implicated in melanosome sorting deficiency. The co-regulation of GAK and cathepsin B and L expression with the melanogenic biosynthetic pathway in normal human melanocytes as well as in B16-F0 melanoma cells strengthen the idea that these proteins represent new possible targets for prevention and treatment of irregular pigmentation.  相似文献   

3.
We propose that some of the critical molecules involved in the transfer of melanosomes from melanocytes to keratinocytes include plasma membrane lectins and their glycoconjugates. To investigate this mechanism, co-cultures of human melanocytes and keratinocytes derived from neonatal foreskins were established. The process of melanosome transfer was assessed by two experimental procedures. The first involved labeling melanocyte cultures with the fluorochrome CFDA. Labeled melanocytes were subsequently co-cultured with keratinocytes, and the transfer of fluorochrome assessed visually by confocal microscopy and quantitatively by flow cytometry. The second investigative approach involved co-culturing melanocytes with keratinocytes, and processing the co-cultures after 3 days for electron microscopy to quantitate the numbers of melanosomes in keratinocytes. Results from these experimental approaches indicate significant transfer of dye or melanosomes from melanocytes to keratinocytes that increased with time of co-culturing. Using these model systems, we subsequently tested a battery of lectins and neoglycoproteins for their effect in melanosome transfer. Addition of these selected molecules to co-cultures inhibited transfer of fluorochrome by approximately 15-44% as assessed by flow cytometry, and of melanosomes by 67-93% as assessed by electron microscopy. Therefore, our results suggest the roles of selected lectins and glycoproteins in melanosome transfer to keratinocytes in the skin.  相似文献   

4.
The epidermal–melanin unit is composed of one melanocyte and approximately 36 neighboring keratinocytes, working in synchrony to produce and distribute melanin. Melanin is synthesized in melanosomes, transferred to the dendrite tips, and translocated into keratinocytes, forming caps over the keratinocyte nuclei. The molecular and cellular mechanisms involved in melanosome transfer and the keratinocyte–melanocyte interactions required for this process are not yet completely understood. Suggested mechanisms of melanosome transfer include melanosome release and endocytosis, direct inoculation (‘injection’), keratinocyte–melanocyte membrane fusion, and phagocytosis. Studies of the keratinocyte receptor protease‐activated receptor‐2 (PAR‐2) support the phagocytosis theory. PAR‐2 controls melanosome ingestion and phagocytosis by keratinocytes and exerts a regulatory role in skin pigmentation. Modulation of PAR‐2 activity can enhance or decrease melanosome transfer and affects pigmentation only when there is keratinocyte–melanocyte contact. Moreover, PAR‐2 is induced by UV irradiation and inhibition of PAR‐2 activation results in the prevention of UVB‐induced tanning. The role of PAR‐2 in mediating UV‐induced responses remains to be elucidated.  相似文献   

5.
Reconstructed pigmented epidermis was established by co‐seeding autologous melanocytes and keratinocytes onto a dermal substrate and culturing for up to 6 weeks at the air–liquid interface. Inspection of the tissue architecture revealed that melanocytes are regularly interspersed only in the basal layer and transfer melanosomes to the keratinocytes. We report for the first time, the in vitro formation of supranuclear melanin caps above the keratinocyte nuclei. The formation and abundance of these melanin caps could be enhanced by pigment modifiers such as ultraviolet light and 3‐isobutyl‐1‐methyl‐xanthine (IBMX). In untreated cultures, the capping was observed in the spinous layers after 6 weeks of culture, whereas after irradiation or supplementation of the culture medium with IBMX, the capping occurred already in the basal layer 2 weeks after initiation of the stimulus. In this study, we show that IBMX and ultraviolet irradiation stimulate pigmentation via different mechanisms. After supplementation of the culture medium with IBMX the increase in pigmentation was entirely due to the increase in melanocyte activity as observed by increased dendrite formation, melanin production and transport to the keratinocytes and was not due to an increase in melanocyte proliferation. In contrast, after UV irradiation, the increase in pigmentation was also accompanied with an increase in melanocyte proliferation as well as an increase in melanocyte activity. In conclusion, we describe the establishment of pigmented reconstructed epidermis with autologous keratinocytes and melanocytes that can be kept in culture for a period of at least 6 weeks. The complete program of melanogenesis occurs: melanosome synthesis, melanosome transport to keratinocytes, supranuclear capping of keratinocyte nuclei and tanning of the epidermis. This enables sustained application of pigment stimulators over a prolonged period of time and also repeated application of pigment stimulators to be studied.  相似文献   

6.
Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation.  相似文献   

7.
8.
Physical contact between melanocytes and keratinocytes is a prerequisite for melanosome transfer to occur, but cellular signals induced during or after contact are not fully understood. Herein, it is shown that interactions between melanocyte and keratinocyte plasma membranes induced a transient intracellular calcium signal in keratinocytes that was required for pigment transfer. This intracellular calcium signal occurred due to release of calcium from intracellular stores. Pigment transfer observed in melanocyte–keratinocyte co‐cultures was inhibited when intracellular calcium in keratinocytes was chelated. We propose that a ‘ligand‐receptor’ type interaction exists between melanocytes and keratinocytes that triggers intracellular calcium signalling in keratinocytes and mediates melanin transfer.  相似文献   

9.
Autophagy regulates cellular turnover by disassembling unnecessary or dysfunctional constituents. Recent studies demonstrated that autophagy and its regulators play a wide variety of roles in melanocyte biology. Activation of autophagy is known to induce melanogenesis and regulate melanosome biogenesis in melanocytes. Also, autophagy induction was reported to regulate physiologic skin color via melanosome degradation, although the downstream effectors are not yet clarified. To determine the role of autophagy as a melanosome degradation machinery, we administered several autophagy inducers in human keratinocytes and melanocytes. Our results showed that the synthetic autophagy inducer PTPD‐12 stimulated autophagic flux in human melanocytes and in keratinocytes containing transferred melanosomes. Increased autophagic flux led to melanosome degradation without affecting the expression of MITF. Furthermore, the color of cell pellets of both melanocytes and keratinocytes was visibly lightened. Inhibition of autophagic flux by chloroquine resulted in marked attenuation of PTPD‐12‐induced melanosome degradation, whereas the expression of melanogenesis pathway genes and proteins remained unaffected. Taken together, our results suggest that the modulation of autophagy can contribute to the regulation of melanocyte biology and skin pigmentation.  相似文献   

10.
Pathways of melanosome biogenesis in retinal pigment epithelial (RPE) cells have received less attention than those of skin melanocytes. Although the bulk of melanin synthesis in RPE cells occurs embryonically, it is not clear whether adult RPE cells continue to produce melanosomes. Here, we show that progression from pmel17-positive premelanosomes to tyrosinase-positive mature melanosomes in the RPE is largely complete before birth. Loss of functional Rab38 in the "chocolate" (cht) mouse causes dramatically reduced numbers of melanosomes in adult RPE, in contrast to the mild phenotype previously shown in skin melanocytes. Choroidal melanocytes in cht mice also have reduced melanosome numbers, but a continuing low level of melanosome biogenesis gradually overcomes the defect, unlike in the RPE. Partial compensation by Rab32 that occurs in skin melanocytes is less effective in the RPE, presumably because of the short time window for melanosome biogenesis. In cht RPE, premelanosomes form but delivery of tyrosinase is impaired. Premelanosomes that fail to deposit melanin are unstable in both cht and tyrosinase-deficient RPE. Together with the high levels of cathepsin D in immature melanosomes of the RPE, our results suggest that melanin deposition may protect the maturing melanosome from the activity of lumenal acid hydrolases.  相似文献   

11.
Reconstructed pigmented epidermis was established by co-seeding autologous melanocytes and keratinocytes onto a dermal substrate and culturing for up to 6 weeks at the air-liquid interface. Inspection of the tissue architecture revealed that melanocytes are regularly interspersed only in the basal layer and transfer melanosomes to the keratinocytes. We report for the first time, the in vitro formation of supranuclear melanin caps above the keratinocyte nuclei. The formation and abundance of these melanin caps could be enhanced by pigment modifiers such as ultraviolet light and 3-isobutyl-1-methyl-xanthine (IBMX). In untreated cultures, the capping was observed in the spinous layers after 6 weeks of culture, whereas after irradiation or supplementation of the culture medium with IBMX, the capping occurred already in the basal layer 2 weeks after initiation of the stimulus. In this study, we show that IBMX and ultraviolet irradiation stimulate pigmentation via different mechanisms. After supplementation of the culture medium with IBMX the increase in pigmentation was entirely due to the increase in melanocyte activity as observed by increased dendrite formation, melanin production and transport to the keratinocytes and was not due to an increase in melanocyte proliferation. In contrast, after UV irradiation, the increase in pigmentation was also accompanied with an increase in melanocyte proliferation as well as an increase in melanocyte activity. In conclusion, we describe the establishment of pigmented reconstructed epidermis with autologous keratinocytes and melanocytes that can be kept in culture for a period of at least 6 weeks. The complete program of melanogenesis occurs: melanosome synthesis, melanosome transport to keratinocytes, supranuclear capping of keratinocyte nuclei and tanning of the epidermis. This enables sustained application of pigment stimulators over a prolonged period of time and also repeated application of pigment stimulators to be studied.  相似文献   

12.
BACKGROUND: Fish melanocytes aggregate or disperse their melanosomes in response to the level of intracellular cAMP. The role of cAMP is to regulate both melanosome travel along microtubules and their transfer between microtubules and actin. The factors that are downstream of cAMP and that directly modulate the motors responsible for melanosome transport are not known. To identify these factors, we are characterizing melanosome transport mutants in zebrafish. RESULTS: We report that a mutation (allele j120) in the gene encoding zebrafish melanophilin (Mlpha) interferes with melanosome dispersion downstream of cAMP. Based on mouse genetics, the current model of melanophilin function is that melanophilin links myosin V to melanosomes. The residues responsible for this function are conserved in the zebrafish ortholog. However, if linking myosin V to melanosomes was Mlpha's sole function, elevated cAMP would cause mlpha(j120) mutant melanocytes to hyperdisperse their melanosomes. Yet this is not what we observe. Instead, mutant melanocytes disperse their melanosomes much more slowly than normal and less than halfway to the cell margin. This defect is caused by a failure to suppress minus-end (dynein) motility along microtubules, as shown by tracking individual melanosomes. Disrupting the actin cytoskeleton, which causes wild-type melanocytes to hyperdisperse their melanosomes, does not affect dispersion in mutant melanocytes. Therefore, Mlpha regulates dynein independently of its putative linkage to myosin V. CONCLUSIONS: We propose that cAMP-induced melanosome dispersion depends on the actin-independent suppression of dynein by Mlpha and that Mlpha coordinates the early outward movement of melanosomes along microtubules and their later transfer to actin filaments.  相似文献   

13.
White Leghorn chickens have decreased feather melanin, not because pigment cells are absent, but because of a genetically determined programmed cell death that causes pigment cells to degenerate prematurely before the melanin can be deposited in the feathers. In this paper, we studied the feather germs of this breed and of control Black Minorca chickens by light and electron microscopy to elucidate further the mechanism of cell death.White Leghorn feature-germ melanocytes produced a large number of unmelanized melanosomes which, however, did not become melanized, nor were they transferred into the keratinocytes of the follicles. From day 10 of incubation onward, large autophagosomes appeared in the melanocytes of White Leghorn feather follicles. These autophagosomes were acid phosphatase positive and engulfed incompletely melanized melanosomes. They also contained melanosome degradation products. Finally, degeneration of the whole melanocyte followed. These necrotic melanocytes were engulfed by normal-looking keratinocytes of the same follicle. In Black Minorcas, on the other hand, there was a normal sequence of synthesis, melanization, and transfer of melanosomes. The melanocytes degenerated only at the time of hatching, without the formation of large autophagosomes.  相似文献   

14.
Physical contact between melanocytes and keratinocytes is a prerequisite for melanosome transfer to occur, but cellular signals induced during or after contact are not fully understood. Herein, it is shown that interactions between melanocyte and keratinocyte plasma membranes induced a transient intracellular calcium signal in keratinocytes that was required for pigment transfer. This intracellular calcium signal occurred due to release of calcium from intracellular stores. Pigment transfer observed in melanocyte-keratinocyte co-cultures was inhibited when intracellular calcium in keratinocytes was chelated. We propose that a 'ligand-receptor' type interaction exists between melanocytes and keratinocytes that triggers intracellular calcium signalling in keratinocytes and mediates melanin transfer.  相似文献   

15.
Melanosomes synthesized within melanocytes are transferred to keratinocytes through dendrites, resulting in a constant supply of melanin to the epidermis, and this process determines skin pigmentation. During screening for inhibitors of melanosome transfer, we found a novel reagent, centaureidin, that induces significant morphological changes in normal human epidermal melanocytes and inhibits melanocyte dendrite elongation, resulting in a reduction of melanosome transfer in an in vitro melanocyte-keratinocyte co-culture system. Since members of the Rho family of small GTP-binding proteins act as master regulators of dendrite formation, and activated Rho promotes dendrite retraction, we studied the effects of centaureidin on the small GTPases. In in vitro binding assay, centaureidin activated Rho and furthermore, a Rho inhibitor (C. botulinum C3 exoenzyme), a Rho kinase inhibitor (Y27632) and a small GTPase inhibitor (Toxin B) blocked dendrite retraction induced by centaureidin. These results suggest centaureidin could act via the Rho signaling pathway, and it may directly or indirectly activate Rho. Thus, centaureidin appears to inhibit dendrite outgrowth from melanocytes by activating Rho, resulting in the inhibition of melanosome transfer from melanocytes to keratinocytes.  相似文献   

16.
Hirobe T  Abe H 《Zoological science》2007,24(4):338-345
The slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase in melanocytes and to reduce the melanin content in the skin, hairs, and eyes. The slaty gene is known to be important for maximizing melanin deposition in melanosomes. However, it was not known whether the slaty mutation affects the morphology of melanosomes. Moreover, it was unknown whether melanosome development is modulated by melanogenic factors. In this study, the characteristics of melanosomes of slaty melanocytes in serum-free primary culture were investigated in detail under the electron microscope. In slaty melanocytes, melanosome maturation was blocked at stage III, and numerous spherical melanosomes with globular depositions of pigment in addition to elliptical melanosomes were observed. L-tyrosine (Tyr), the starting material of melanin synthesis, is known to stimulate melanin synthesis. To clarify whether L-Tyr restores the reduced production of melanin, L-Tyr was added to the culture medium and tested for its melanogenic effect. L-Tyr greatly increased the number and percentage of mature stage IV melanosomes. Moreover, L-Tyr increased elliptical melanosomes, but decreased spherical melanosomes. These results suggest that the slaty mutation inhibits the development of elliptical stage IV melanosomes, and that L-Tyr restores the development of elliptical stage IV melanosomes. L-Tyr seems to restore both the morphology and maturation of melanosomes affected by the slaty mutation.  相似文献   

17.
How are proliferation and differentiation of melanocytes regulated?   总被引:1,自引:0,他引:1  
Coat colors are determined by melanin (eumelanin and pheomelanin). Melanin is synthesized in melanocytes and accumulates in special organelles, melanosomes, which upon maturation are transferred to keratinocytes. Melanocytes differentiate from undifferentiated precursors, called melanoblasts, which are derived from neural crest cells. Melanoblast/melanocyte proliferation and differentiation are regulated by the tissue environment, especially by keratinocytes, which synthesize endothelins, steel factor, hepatocyte growth factor, leukemia inhibitory factor and granulocyte-macrophage colony-stimulating factor. Melanocyte differentiation is also stimulated by alpha-melanocyte stimulating hormone; in the mouse, however, this hormone is likely carried through the bloodstream and not produced locally in the skin. Melanoblast migration, proliferation and differentiation are also regulated by many coat color genes otherwise known for their ability to regulate melanosome formation and maturation, pigment type switching and melanosome distribution and transfer. Thus, melanocyte proliferation and differentiation are not only regulated by genes encoding typical growth factors and their receptors but also by genes classically known for their role in pigment formation.  相似文献   

18.
The quest for the mechanism of melanin transfer   总被引:4,自引:1,他引:3  
Skin pigmentation is accomplished by production of melanin in specialized membrane-bound organelles termed melanosomes and by transfer of these organelles from melanocytes to surrounding keratinocytes. The mechanism by which these cells transfer melanin is yet unknown. A central role has been established for the protease-activated receptor-2 of the keratinocyte which effectuates melanin transfer via phagocytosis. What exactly is being phagocytosed - naked melanin, melanosomes or melanocytic cell parts - remains to be defined. Analogy of melanocytes to neuronal cells and cells of the haemopoietic lineage suggests exocytosis of melanosomes and subsequent phagocytosis of naked melanin. Otherwise, microscopy studies demonstrate cytophagocytosis of melanocytic dendrites. Other plausible mechanisms are transfer via melanosome-containing vesicles shed by the melanocyte or transfer via fusion of keratinocyte and melanocyte plasma membranes with formation of tunnelling nanotubes. Molecules involved in transfer are being identified. Transfer is influenced by the interactions of lectins and glycoproteins and, probably, by the action of E-cadherin, SNAREs, Rab and Rho GTPases. Further clues as to what mechanism and molecular machinery will arise with the identification of the function of specific genes which are mutated in diseases that affect transfer.  相似文献   

19.
Different approaches for assaying melanosome transfer   总被引:3,自引:0,他引:3  
Many approaches have been tried to establish assays for melanosome transfer to keratinocytes. In this report, we describe and summarize various novel attempts to label melanosomes in search of a reliable, specific, reproducible and quantitative assay system. We tried to fluorescently label melanosomes by transfection of GFP-labeled melanosomal proteins and by incubation of melanocytes with fluorescent melanin intermediates or homologues. In most cases a weak cytoplasmic fluorescence was perceived, which was probably because of incorrect sorting or deficient incorporation of the fluorescent protein and different localization. We were able to label melanosomes via incorporation of 14C-thiouracil into melanin. Consequently, we tried to develop an assay to separate keratinocytes with transferred radioactivity from melanocytes after co-culture. Differential trypsinization and different magnetic bead separation techniques were tested with unsatisfactory results. An attempt was also made to incorporate fluorescent thiouracil, since this would allow cells to be separated by FACS. In conclusion, different methods to measure pigment transfer between donor melanocytes and acceptor keratinocytes were thoroughly examined. This information could give other researchers a head start in the search for a melanosome transfer assay with said qualities to better understand pigment transfer.  相似文献   

20.
Keratinocyte-melanocyte interactions during melanosome transfer   总被引:9,自引:0,他引:9  
The epidermal-melanin unit is composed of one melanocyte and approximately 36 neighboring keratinocytes, working in synchrony to produce and distribute melanin. Melanin is synthesized in melanosomes, transferred to the dendrite tips, and translocated into keratinocytes, forming caps over the keratinocyte nuclei. The molecular and cellular mechanisms involved in melanosome transfer and the keratinocyte-melanocyte interactions required for this process are not yet completely understood. Suggested mechanisms of melanosome transfer include melanosome release and endocytosis, direct inoculation ('injection'), keratinocyte-melanocyte membrane fusion, and phagocytosis. Studies of the keratinocyte receptor protease-activated receptor-2 (PAR-2) support the phagocytosis theory. PAR-2 controls melanosome ingestion and phagocytosis by keratinocytes and exerts a regulatory role in skin pigmentation. Modulation of PAR-2 activity can enhance or decrease melanosome transfer and affects pigmentation only when there is keratinocyte-melanocyte contact. Moreover, PAR-2 is induced by UV irradiation and inhibition of PAR-2 activation results in the prevention of UVB-induced tanning. The role of PAR-2 in mediating UV-induced responses remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号