首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spores of Nosema locustae that were freshly prepared, stored in water at ?10°C for 8 months to 3 years, or stored in cadavers for 1 year at ?10°C were applied on bran at the rate of 109 spores/1.5 lb bran per acre. Applications of fresh spores resulted in higher density reductions and higher incidence of infection among survivors than applications of spores stored in water or cadavers in both a complex of grasshoppers predominated by a single species and in a mixed species complex. Density reductions due to treatment with fresh spores were similar in the two populations, but the mixed species complex had a lower incidence of infection than the complex in which one species predominated. Applications of fresh spores reduced grasshopper densities in both complexes to levels below the economic thresholds.  相似文献   

2.
Conidia of the Hyphomycete fungus Beauveria bassiana (Bals.) were applied in an attempt to reduce field populations of grasshoppers, primarily the migratory grasshopper Melanoplus sanguinipes (Fabricius). Dry spores were applied with wheat bran carrier to three fallow fields at a rate of 2.0 × 1013 spores ha?1 in 10 kg bait ha?1. Examination of culture plates that had been placed in the field to capture spores and of bran carrier with scanning electron microscopy indicated that a substantial portion of the B. bassiana colony—forming units (spores and clumps of spores) did not adhere to the bran and were applied in the field as free particles. Grasshoppers collected from the treated plots at intervals after application were assayed for infection by B. bassiana. The observed rate of mycosis in the treated populations was 70% of those collected after 2 days, declining to 41% by 13 days and 5% by 19 days after application. Analysis of reductions in population density gave results in agreement with the infection data. Treated populations declined 60% and 33% by 9 and 15 days after application respectively. The reductions were significant on both post—treatment sampling dates (p < 0.05) and the three replicated fields gave comparable results. This is the first field demonstration of effectiveness of this fungus as a microbial control agent of grasshoppers.  相似文献   

3.
Verticillium lecanii has been recognized as an entomopathogen with high potential in biological control of pests. Two types of cultivation methods, the solid-state fermentation (SSF) and the liquid-state fermentation (LSF), were examined for V. lecanii. In SSF, the substrate types including rice, rice bran, rice husk, and the mixtures of these components were tested. The results showed that both cooked rice with appropriate water addition and rice bran gave significantly higher spore production of 1.5 2 109 spores/g substrate and 1.4 2 109 spores/g substrate, respectively. In LSF, SMAY liquid medium was used as a base, and the effects of environmental conditions on the spore production of V. lecanii were investigated. From the time course study, on the 9th day the spore yield reached 1.2 2 109 spores/ml of broth at 24v°C, 150 rpm for this strain. A series of medium volumes in the shaker-flask have been tested for the requirement of aeration. The largest surface aeration test, one tenth of the medium volume in the shaker-flask for cultivation, gave the highest spore count. The optimal pH value was tested and the initial pH 5 in the SMAY medium produced a high spore density. Finally, V. lecanii spores from SSF and LSF were different in size, shape, and size distribution; while mean spore length from SSF was 6.1 7m, and mean spore length from LSF was 5.0 7m.  相似文献   

4.
Per os inoculations of 4- to 6-day-old larvae of the corn earworm, Heliothis zea, with suspensions containing 106 spores of Nosema acridophagus or 104, 105, and 106 spores of Nosema cuneatum retarded the growth and development of the larvae. Migratory grasshoppers, Melanoplus sanguinipes, inoculated with N. acridophagus produced fewer spores than similarly inoculated corn earworms, but spore production was similar in these insects when they were inoculated with N. cuneatum. Standard bioassay procedures showed that spores of both microsporidians were some-what more virulent when they were produced in corn earworms than when they were produced in grasshoppers. Spores of these microsporidians might be produced more efficiently in corn earworm larvae than in grasshoppers.  相似文献   

5.
Bacillus subtilis spore preparations are promising probiotics and biocontrol agents, which can be used in plants, animals, and humans. The aim of this work was to optimize the nutritional conditions using a statistical approach for the production of B. subtilis (WHK-Z12) spores. Our preliminary experiments show that corn starch, corn flour, and wheat bran were the best carbon sources. Using Plackett–Burman design, corn steep liquor, soybean flour, and yeast extract were found to be the best nitrogen source ingredients for enhancing spore production and were studied for further optimization using central composite design. The key medium components in our optimization medium were 16.18 g/l of corn steep liquor, 17.53 g/l of soybean flour, and 8.14 g/l of yeast extract. The improved medium produced spores as high as $ 1.52 \pm 0.06 \times {10^{10}}{\text{spores}}/{\text{ml}} $ under flask cultivation conditions, and $ 1.56 \pm 0.07 \times {10^{10}}{\text{spores}}/{\text{ml}} $ could be achieved in a 30-l fermenter after 40 h of cultivation. To the best of our knowledge, these results compared favorably to the documented spore yields produced by B. subtilis strains.  相似文献   

6.
Lea Nol  Yigal Henis 《Plant and Soil》1987,100(1-3):285-295
Summary The effect of spore concentration on spore germination and germtube growth ofTrichoderma hamatum on water agar and on potato dextrose agar (PDA) was studied. Increasing inoculum size up to 109 spores/plate on PDA and up to 107 spores/plate on water agar shortened the incubation period required for germtubes emergence and increased germination rate. However, on water agar germination was inhibited at 108 and was completely arrested at 109 spores/plate. Inhibition in germination of 107 spores/plate was observed on water agar when the plates were preincubated with 109 spores/plate for 5 h or more. Addition of glucose and ammonium nitrate to the water agar medium allowed only 25% of the spores to germinate at 109 as compared to 78% at 107 spores/plate after 8 h of incubation. Addition of polysaccharides to the C+N supplemented medium, significantly increased germination up to 84% as compared to 100% on PDA, after 8 h of incubation. Germlings ofTrichoderma hamatum phialospores exhibited positive autotropism and anastamosis on both media. The phenomenon was positively related to inoculum size, being most pronounced at 107 spores/plate.  相似文献   

7.
Mangan SA  Eom AH  Adler GH  Yavitt JB  Herre EA 《Oecologia》2004,141(4):687-700
It is now understood that alterations in the species composition of soil organisms can lead to changes in aboveground communities. In this study, we assessed the importance of spatial scale and forest size on changes in arbuscular mycorrhizal fungal (AMF) spore communities by sampling AMF spores in soils of forested mainland and island sites in the vicinity of Gatun Lake, Republic of Panama. We encountered a total of 27 AMF species or morphospecies, with 17, 8, 1 and 1 from the genera Glomus, Acaulospora, Sclerosystis, and Scutellospora, respectively. At small scales (<100 m2), we found little evidence for spatial structuring of AMF communities (decay of Morisita-Horn community similarity with distance). However, at large spatial scales, we found that the AMF spore community of a mainland plot was more similar to other mainland plots several kilometers (>5) away than to nearby island plots (within 0.7 km). Likewise, most island plots were more similar to other island plots regardless of geographic separation. There was no decay in AMF species richness (number of species), or Shannon diversity (number of species and their spore numbers) either with decreasing forest-fragment size, or with decreasing plant species richness. Of the six most common species that composed almost 70% of the total spore volume, spores of Glomus tsh and G. clavisporum were more common in soils of mainland plots, while spores of Glomus small brown and Acaulospora mellea were more abundant in soils of island plots. None of these common AMF species showed significant associations with soil chemistry or plant diversity. We suggest that the convergence of common species found in AMF spore communities in soils of similar forest sizes was a result of forest fragmentation. Habitat-dependent convergence of AMF spore communities may result in differential survival of tree seedlings regenerating on islands versus mainland.  相似文献   

8.
Aims: To determine effects of inner membrane lipid composition on Bacillus subtilis sporulation and spore properties. Methods and Results: The absence of genes encoding lipid biosynthetic enzymes had no effect on B. subtilis sporulation, although the expected lipids were absent from spores’ inner membrane. The rate of spore germination with nutrients was decreased c. 50% with mutants that lacked the major cardiolipin (CL) synthase and another enzyme for synthesis of a major phospholipid. Spores lacking the minor CL synthase or an enzyme essential for glycolipid synthesis exhibited 50–150% increases in rates of dodecylamine germination, while spores lacking enzymes for phosphatidylethanolamine (PE), phosphatidylserine (PS) and lysylphosphatidylglycerol (l‐PG) synthesis exhibited a 30–50% decrease. Spore sensitivity to H2O2 and tert‐butylhydroperoxide was increased 30–60% in the absence of the major CL synthase, but these spores’ sensitivity to NaOCl or Oxone? was unaffected. Spores of lipid synthesis mutants were less resistant to wet heat, with spores lacking enzymes for PE, PS or l‐PG synthesis exhibiting a two to threefold decrease and spores of other strains exhibiting a four to 10‐fold decrease. The decrease in spore wet heat resistance correlated with an increase in core water content. Conclusions: Changing the lipid composition of the B. subtilis inner membrane did not affect sporulation, although modest effects on spore germination and wet heat and oxidizing agent sensitivity were observed, especially when multiple lipids were absent. The increases in rates of dodecylamine germination were likely due to increased ability of this compound to interact with the spore’s inner membrane in the absence of some CL and glycolipids. The effects on spore wet heat sensitivity are likely indirect, because they were correlated with changes in core water content. Significance and Impact of the Study: The results of this study provide insight into roles of inner membrane lipids in spore properties.  相似文献   

9.
Spore yields were measured for various fungal entomopathogens grown in six nutritionally different liquid media with low and high carbon concentrations (8 and 36 g l–1, respectively) at carbon-to-nitrogen (C:N) ratios of 10:1, 30:1 and 50:1. Six fungi were tested: two Beauveria bassiana strains, three Paecilomyces fumosoroseus strains and one Metarhizium anisopliae strain. Spore yields were examined after 2, 4 or 7 days growth. In general, highest spore yields were obtained in media containing 36 g/l and a C:N ratio of 10:1. After 4 days growth, highest spore yields were measured in the three Paecilomyces isolates (6.9–9.7 × 108 spores ml–1). Spore production by the B. bassiana isolates was variable with one isolate producing high spore yields (12.2 × 108 spores ml–1) after 7 days growth. The M. anisopliae isolate produced low spore concentrations under all conditions tested. Using a commercial production protocol, a comparison of spore yields for the coffee berry borer P. fumosoroseus and a commercial B. bassiana isolate showed that highest spore concentrations (7.2 × 108 spores ml–1) were obtained with the P. fumosoroseus isolate 2-days post-inoculation. The ability of the P. fumosoroseus strain isolated from the coffee berry borer to rapidly produce high concentrations of spores prompted further testing to determine the desiccation tolerance of these spores. Desiccation studies showed that ca. 80% of the liquid culture produced P. fumosoroseus spores survived the air-drying process. The virulence of freshly produced, air-dried and freeze-dried coffee berry borer P. fumosoroseus blastospores preparations were tested against silverleaf whiteflies (Bemisia argentifolii). While all preparations infected and killed B. argentifolii, fresh and air-dried preparations were significantly more effective. These results suggest that screening potential fungal biopesticides for amenability to liquid culture spore production can aid in the identification of commercially viable isolates. In this study, P. fumosoroseus was shown to possess the production and stabilization attributes required for commercial development.  相似文献   

10.
Verticillium lecanii is an entomopathogen with high potential in biological control of pests. We developed a solid-state fermentation with sugarcane bagasse as carrier absorbing liquid medium to propagate V. lecanii spores. Using statistical experimental design, we optimized the medium composition for spore production. We first used one-factor-at-a-time design to identify corn flour and yeast extract as the best carbon and nitrogen sources for the spore production of V. lecanii. Then, we used two-level fractional factorial design to confirm corn flour, yeast extract, and KH2PO4 as important factors significantly affecting V. lecanii spore production. Finally, we optimized these selected variables using a central composite design and response surface method. The optimal medium composition was (grams per liter): corn flour 35.79, yeast 8.69, KH2PO4 1.63, K2HPO4 0.325, and MgSO4 0.325. Under optimal conditions, spore production reached 1.1 × 1010 spores/g dried carrier, much higher than that on wheat bran (1.7 × 109 spores/g initial dry matter).  相似文献   

11.
Spore-forming Bacillus sp. has been extensively studied for their probiotic properties. In this study, an acid-treated rice straw hydrolysate was used as carbon source to produce the spores of Bacillus coagulans. The results showed that this hydrolysate significantly improved the spore yield compared with other carbon sources such as glucose. Three significant medium components including rice straw hydrolysate, MnSO4 and yeast extract were screened by Plackett–Burman design. These significant variables were further optimized by response surface methodology (RSM). The optimal values of the medium components were rice straw hydolysate of 27% (v/v), MnSO4 of 0·78 g l−1 and yeast extract of 1·2 g l−1. The optimized medium and RSM model for spore production were validated in a 5 l bioreactor. Overall, this sporulation medium containing acid-treated rice straw hydrolysate has a potential to be used in the production of B. coagulans spores.  相似文献   

12.
Summary The effect of substrate (buckwheat seeds) pretreatment on the growth and the sporulation behaviour of Penicillium roqueforti is presented. When a saccharifying enzyme (-amylase) is added to a medium which exhibits a low water content (0.46 g water/g initial dry matter, IDM), a more rapid internal colonization of the seeds occurs, but the final spore production does not increase and remains close to 8.109 spores/g dry matter (DM) at 500 h. No carbon source limitation is then observed. The addition of casein hydrolysate to this medium gives rise to a great increase of the sporulation, since 14.5 109 spores/g DM are obtained after 600 h. This result is attained by a better spore yield from the mycelium, the substrate colonization being unchanged. High water content (0.60 g water/g IDM) of buckwheat seeds induces a shorter cultivation time along with a higher biomass production. However, the spore content of the medium remains close to the low water content one, but 60% total spores are external against 30% to 35% in the other media.  相似文献   

13.
14.
《Microbiological research》2014,169(12):931-939
Bacillus endospores have a wide variety of important medical and industrial applications. This is an overview of the fundamental aspects of the life cycle, spore structure and factors that influence the spore resistance of spore-forming Bacillus. Bacillus atrophaeus was used as reference microorganism for this review because their spores are widely used to study spore resistance and morphology. Understanding the mechanisms involved in the cell cycle and spore survival is important for developing strategies for spore killing; producing highly resistant spores for biodefense, food and pharmaceutical applications; and developing new bioactive molecules and methods for spore surface display.  相似文献   

15.
Aims: To determine the effects of cysteine, cystine, proline and thioproline as sporulation medium supplements on Bacillus subtilis spore resistance to hydrogen peroxide (H2O2), wet heat, and germicidal 254 nm and simulated environmental UV radiation. Methods and Results: Bacillus subtilis spores were prepared in a chemically defined liquid medium, with and without supplementation of cysteine, cystine, proline or thioproline. Spores produced with thioproline, cysteine or cystine were more resistant to environmentally relevant UV radiation at 280–400 and 320–400 nm, while proline supplementation had no effect. Spores prepared with cysteine, cystine or thioproline were also more resistant to H2O2 but not to wet heat or 254‐nm UV radiation. The increases in spore resistance attributed to the sporulation supplements were eliminated if spores were chemically decoated. Conclusions: Supplementation of sporulation medium with cysteine, cystine or thioproline increases spore resistance to solar UV radiation reaching the Earth’s surface and to H2O2. These effects were eliminated if the spores were decoated, indicating that alterations in coat proteins by different sporulation conditions can affect spore resistance to some agents. Significance and Impact of the Study: This study provides further evidence that the composition of the sporulation medium can have significant effects on B. subtilis spore resistance to UV radiation and H2O2. This knowledge provides further insight into factors influencing spore resistance and inactivation.  相似文献   

16.
在采用蝗虫微孢子虫Nosema locustae防治过的草场中进行抽样调查,研究了草原蝗虫优势种类、混合种群平均密度与蝗虫微孢子虫疾病分布之关系,以及该疾病的空间分布。在防治后的当年,蝗虫微孢子虫疾病的感染率随着混合种群平均密度及靶标蝗虫亚洲小车蝗Oedaleus asiaticus的感病率的下降而降低。但是,次靶标蝗虫如宽须蚁蝗Myrmeleotettixpalpalis(一种中后期发生的种类)其感病率呈上升趋势,表明该疾病可在不同发生期种类蝗虫之间进行有效地传播。病蝗虫在防治后第7d其空间分布呈随机分布(Poisson),第28d 则是聚集分布,第40d时也呈聚集分布。于1993年、1994年对1988年(样区Ⅱ)、1989 年(样区Ⅲ)采用微孢子虫防治过的草场进行抽样调查。结果表明,在二个样区中,二年混合种群平均虫口密度与混合种群的平均感病率呈正相关(相关系数分别为r=0.289, r=0.479)。蝗虫微孢子虫病在主要优势种,如亚洲小车蝗、宽须蚁蝗、白边痂蝗Bryode maluctuosumluctuosum、皱膝蝗Angaracris /I>spp.、毛足棒角蝗Dasyhippus barbipes均有分布。二个样区中的混合蝗虫种群的平均感病率在1994年显著低于1993年。混合蝗虫种群的种类组成也有所变化,与1993年相比,1994年宽须蚁蝗及白边痂蝗的比例上升较大,而亚洲小车蝗的比例下降。经过5—7年的扩散,蝗虫微孢子虫病至少可扩散距防治区1 000m,其扩散方向可能与风及地势等有关。  相似文献   

17.
In two large-scale observation trials on commercial farms inorganic nitrogen fertilizer was applied at 70 lb. N/acre (N1), 1401b. N/acre (N2) and at a normal commercial rate of 210 lb. N/acre (N3). Mean wilt incidence was 60 and 25% less with Ni and N2 respectively than with N3 during 5 years at one site and 3 years at the other. During these periods wilt declined progressively and this was tentatively attributed to the reduced intensity of host colonization, and to progressive declines in soil infectivity resulting from effects on the quantity, quality and longevity of annually produced inoculum. Marked annual fluctuations of wilt incidence and yields occurred at one site and these were associated with weather in the spring and early summer: wilt incidence was inversely related to soil temperature, and yield was directly related to rainfall. Yields were not diminished by the low-N treatments, but clear correlations between yields and wilt incidence were probably obscured by the differential effects of weather conditions at the three levels of N application. The results emphasized the importance of reducing traditionally high N applications and, on farms where fluctuating wilt is severe, of applying the minimum levels of N commensurate with the maintenance of satisfactory yields.  相似文献   

18.
The organophosphorus insecticides Bayer 38156 (O-ethyl S-p-tolyl ethyl phosphonodithioate), trichloronate, Stauffer N 2790 (O-ethyl S-phenyl ethyl phosphonodithioate), thionazin and fenitrothion were compared with aldrin, dieldrin and γ-BHC for their effects on soil fauna, particularly wire-worms, and on crop yields in 1964 and 1965. At 1·5 lb active ingredient/acre, none of the organophosphates had as great an effect on wireworms as an aldrin spray at 2·25 lb a.i./acre or a dieldrin seed dressing at 2·25 lb a.i./acre. Some treatments significantly increased and some significantly decreased numbers of mites and Collembola. Except for Allolobophora chlorotica in plots treated with Bayer 38156, earthworm numbers were greater in plots sprayed with Bayer 38156 or aldrin, or sown with dieldrin-dressed seeds, than in untreated plots. In May 1964, one month after sowing, untreated plots had significantly fewer plants than plots sprayed with aldrin, trichloronate or Bayer 38156, or sown with γ-BHC or dieldrin-dressed seeds, but yields from untreated plots at harvest were high for such a large wireworm population and did not differ significantly from yields of treated plots in either year. The persistence of thionazin and Bayer 38156 in treated plots was measured by a bioassay using Collembola. Bayer 38156 was detected in plots 1 month after spraying but not after 6 months. Thionazin left detectable residues 1 month after spraying in the two acid plots but not in the two alkaline plots. More frequent samples taken from thionazin-treated plots in 1965 showed a similar pattern of persistence, and laboratory tests, using soil mixed with various amounts of powdered calcium carbonate, confirmed that thionazin persisted longer in more acid soils.  相似文献   

19.
The effect of ingestion of Nosema locustae Canning spores on feeding by grasshoppers was measured in simultaneous laboratory and field experiments. After 21 days, fourth-instar Melanoplus sanguinipes (F.) nymphs, administered spores at the rates of 0, 2.0 × 104, 2.0 × 105, and 2.0 × 106 per grasshopper, showed dry matter consumption of 102, 87, 64, and 26 mg in 48 hr, respectively. Rate of inoculation was a significant factor in suppression of feeding after correction for the effects of developmental stage, sex, and body weight. The quantity of dry matter consumed decreased linearly with increasing rate of spore ingestion. Experiments on 50 caged 1-m2 plots on pasture grass yielded similar trends in per capita consumption independent of the effects of mortality. Field consumption per integrated grasshopper-day was 108, 77, 31, and 27 mg dry wt at the four inoculation rates, over 20 days.  相似文献   

20.
A simple and novel procedure for the acceleration of fungal spore production was developed. A net of hydrophobic polymer such as polypropylene (PP) and polytetrafluoroethylene (PTFE) was embedded in a nutrient agar plate, and effect of the polymer net on spore production by 6 fungal strains, such as Aspergillus terreus, Penicillium multicolor, and Trichoderma virens were estimated. The effect of hydrophobic polymer net was insufficient in a liquid-surface immobilization (LSI) system with fungal cells immobilized on a ballooned microsphere layer formed on a liquid medium surface. On the other hand, the embedding of a PTFE net in an agar plate remarkably enhanced the spore production in all 6 strains tested to produce 2.0–8.5 × 107 spores/cm2-agar plate surface. Especially, the spore production by A. terreus ATCC 20542 in the presence of a PTFE net was 7.7 times as much than that in no net. Positive correlations between the hydrophobicity of net and the spore production were observed in all 6 strains (R2, 0.653–0.999).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号