首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus mitis is the closest relative of the major human pathogen S. pneumoniae. The 2,15 Mb sequence of the Streptococcus mitis B6 chromosome, an unusually high-level beta-lactam resistant and multiple antibiotic resistant strain, has now been determined to encode 2100 genes. The accessory genome is estimated to represent over 40%, including 75 mostly novel transposases and IS, the prophage φB6 and another seven phage related regions. Tetracycline resistance mediated by Tn5801, and an unusual and large gene cluster containing three aminoglycoside resistance determinants have not been described in other Streptococcus spp. Comparative genomic analyses including hybridization experiments on a S. mitis B6 specific microarray reveal that individual S. mitis strains are almost as distantly related to the B6 strain as S. pneumoniae. Both species share a core of over 900 genes. Most proteins described as pneumococcal virulence factors are present in S. mitis B6, but the three choline binding proteins PcpA, PspA and PspC, and three gene clusters containing the hyaluronidase gene, ply and lytA, and the capsular genes are absent in S. mitis B6 and other S. mitis as well and confirm their importance for the pathogenetic potential of S. pneumoniae. Despite the close relatedness between the two species, the S. mitis B6 genome reveals a striking X-alignment when compared with S. pneumoniae.  相似文献   

2.
The penicillin-binding protein (PBP) profiles of penicillin-susceptible and-resistant clinical isolates ofStreptococcus mitis varied even with strains with similar minimal inhibitory concentrations (MICs).S. mitis NCTC 10712 was used as a DNA recipient to investigate PBP alterations which could occur as a result of spontaneous mutation and intra- and interspecific transfer of penicillin resistance genes.S. mitis NCTC 10712 possesses seven major PBPs ranging in molecular mass from 49–82 kDa. TwoS. mitis and twoStreptococcus pneumoniae penicillin-resistant clinical isolates were used as donors in transformation experiments withS. mitis NCTC 10712 (MIC 0.03 g/ml) as the recipient. Transformants with MICs greater than 1 g/ml were obtained with bothS. mitis andS. pneumoniae donor DNA. Depending on the source of the donor DNA and level of resistance achieved, transformants showed reduced penicillin-binding affinities of PBPs 2, 3, 4, 5, and 6. The most consistent PBP alteration associated with increasing resistance inS. mitis NCTC 10712 was seen with PBP 3 (74 kDa).  相似文献   

3.
Penicillin-resistant strains of Streptococcus pneumoniae possess forms of penicillin-binding proteins (PBPs) that have a low affinity for penicillin compared to those from penicillin-sensitive strains. PBP genes from penicillin-resistant isolates are very variable and have a mosaic structure composed of blocks of nucleotides that are similar to those found in PBP genes from penicillin-sensitive isolates and blocks that differ by up to 21%. These chromosomally encoded mosaic genes have presumably arisen following transformation and homologous recombination with PBP genes from a number of closely related species. This study shows that PBP2B genes from many penicillin-resistant isolates of S. pneumoniae contain blocks of nucleotides originating from Streptococcus mitis. In several instances it would appear that this material alone is sufficient to produce a low affinity PBP2B. In other examples PBP2B genes possess blocks of nucleotides from S. mitis and at least one additional unidentified species. Mosaic structure was aiso found in the PBP2B genes of penicillin-sensitive isolates of S. mitis or S. pneumoniae. These mosaics did not confer penicillin resistance but nevertheless reveal something of the extent to which localized recombination occurs in these naturally transformable streptococci.  相似文献   

4.
Penicillin-resistant clinical isolates of Streptococcus pneumoniae contain mosaic penicillin-binding protein (PBP) genes that encode PBPs with decreased affinity for β-lactam antibiotics. The mosaic blocks are believed to be the result of gene transfer of homologous PBP genes from related penicillin-resistant species. We have now identified a gene homologous to the pneumococcal PBP2x gene (pbpX) in a penicillin-sensitive Streptococcus oralis isolate M3 from South Africa that diverged by almost 20% from pbpX of penicillin-sensitive pneumococci, and a central sequence block of a mosaic pbpX gene of Streptococcus mitis strain NCTC 10712. In contrast, it differed by only 2-4% of the 1 to 1.5 kb mosaic block in pbpX genes of three genetically unrelated penicillin-resistant S. pneumoniae isolates, two of them representing clones of serotype 6B and 23F, which are prevalent in Spain and are also already found in other countries. With low concentrations of cefotaxime, transformants of the sensitive S. pneumoniae R6 strain could be selected containing pbpX genes from either S. mitis NCTC 10712 or S. oralis M3, demonstrating that genetic exchange can already occur between β-lactam-sensitive species. These data are in agreement with the assumption that PBPs as penicillin-resistance determinants have evolved by the accumulation of point mutations in genes of sensitive commensal species.  相似文献   

5.
Beta‐lactam resistant clinical isolates of Streptococcus pneumoniae contain altered penicillin‐binding protein (PBP) genes and occasionally an altered murM, presumably products of interspecies gene transfer. MurM and MurN are responsible for the synthesis of branched lipid II, substrate for the PBP catalyzed transpeptidation reaction. Here we used the high‐level beta‐lactam resistant S. oralis Uo5 as donor in transformation experiments with the sensitive laboratory strain S. pneumoniae R6 as recipient. Surprisingly, piperacillin‐resistant transformants contained no alterations in PBP genes but carried murEUo5 encoding the UDP‐N‐acetylmuramyl tripeptide synthetase. Codons 83–183 of murEUo5 were sufficient to confer the resistance phenotype. Moreover, the promoter of murEUo5, which drives a twofold higher expression compared to that of S. pneumoniae R6, could also confer increased resistance. Multiple independent transformations produced S. pneumoniae R6 derivatives containing murEUo5, pbp2xUo5, pbp1aUo5 and pbp2bUo5, but not murMUo5 sequences; however, the resistance level of the donor strain could not be reached. S. oralis Uo5 harbors an unusual murM, and murN is absent. Accordingly, the peptidoglycan of S. oralis Uo5 contained interpeptide bridges with one L‐Ala residue only. The data suggest that resistance in S. oralis Uo5 is based on a complex interplay of distinct PBPs and other enzymes involved in peptidoglycan biosynthesis.  相似文献   

6.
7.
Streptococcus pseudopneumoniae (SPPN) is a recently described species of the viridans group streptococci (VGS). Although the pathogenic potential of S. pseudopneumoniae remains uncertain, it is most commonly isolated from patients with underlying medical conditions, such as chronic obstructive pulmonary disease. S. pseudopneumoniae can be distinguished from the closely related species, S. pneumoniae and S. mitis, by phenotypic characteristics, including optochin resistance in the presence of 5% CO2, bile insolubility, and the lack of the pneumococcal capsule. Previously, we reported the draft genome sequence of S. pseudopneumoniae IS7493, a clinical isolate obtained from an immunocompromised patient with documented pneumonia. Here, we use comparative genomics approaches to identify similarities and key differences between S. pseudopneumoniae IS7493, S. pneumoniae and S. mitis. The genome structure of S. pseudopneumoniae IS7493 is most closely related to that of S. pneumoniae R6, but several recombination events are evident. Analysis of gene content reveals numerous unique features that distinguish S. pseudopneumoniae from other streptococci. The presence of loci for competence, iron transport, pneumolysin production and antimicrobial resistance reinforce the phylogenetic position of S. pseudopneumoniae as an intermediate species between S. pneumoniae and S. mitis. Additionally, the presence of several virulence factors and antibiotic resistance mechanisms suggest the potential of this commensal species to become pathogenic or to contribute to increasing antibiotic resistance levels seen among the VGS.  相似文献   

8.
Aims: This study compared the in vitro activity of telithromycin with that of azithromycin against 438 Streptococcus pyogenes and 198 Streptococcus pneumoniae, isolated over the period 2005–2007 from specimens of different human origin obtained in three Piemonte Region’s hospitals. Methods and Results: The determination of antimicrobial activity was evaluated by the microdilution broth method and the erythromycin‐resistant (Ery‐R) phenotypes by the triple‐disc test. Exactly 78·8% of S. pyogenes and 69·2% of S. pneumoniae were erythromycin‐susceptible (Ery‐S). Concerning S. pyogenes, telithromycin was active against M and inducible MLSB, subtype‐C, phenotypes but not against constitutive MLSB strains. Telithromycin acted well against all S. pneumoniae, irrespective of their mechanism of macrolide‐resistance. On the contrary, the Ery‐R isolates, both S. pyogenes and S. pneumoniae, were resistant to azithromycin. Conclusions: Our results indicate that macrolide resistance in streptococci still persist in northwest Italy (21·2% of S. pyogenes and 30·8% of S. pneumoniae) and that telithromycin is confirmed as being extremely active even against recent clinical Ery‐R streptococcal isolates. Significance and Impact of the Study: The present study emphasizes that an active surveillance of the phenotype distribution and antibacterial resistance in streptococci is essential in guiding the effective use of empirical treatment option for streptococcal infections, also at regional level.  相似文献   

9.
Penicillin-resistant isolates of Streptococcus pneumoniae generally contain mosaic genes encoding the low-affinity penicillin-binding proteins (PBPs) PBP2x, PBP2b, and PBP1a. We now present evidence that PBP2a and PBP1b also appear to be low-affinity variants and are encoded by distinct alleles in β-lactam-resistant transformants of S. pneumoniae obtained with chromosomal donor DNA from a Streptococcus mitis isolate. Different lineages of β-lactam-resistant pneumococcal transformants were analyzed, and transformants with low-affinity variants of all high-molecular-mass PBPs, PBP2x, -2a, -2b, -1a, and -1b, were isolated. The MICs of benzylpenicillin, oxacillin, and cefotaxime for these transformants were up to 40, 100, and 50 μg/ml, respectively, close to the MICs for the S. mitis donor strain. Recruitment of low-affinity PBPs was accompanied by a decrease in cross-linked muropeptides as revealed by high-performance liquid chromatography of muramidase-digested cell walls, but no qualitative changes in muropeptide chemistry were detected. The growth rates of all transformants were identical to that of the parental S. pneumoniae strain. The results stress the potential for the acquisition by S. pneumoniae of high-level β-lactam resistance by interspecies gene transfer.  相似文献   

10.
Pneumococcal surface adhesin A (psaA) gene is universally confirmed as one of the Streptococcus pneumoniae adhesion genes, but it is disputed whether the psaA gene is a Streptococcus pneumoniae species‐specific gene. In the present study, the presence of the psaA gene in 34 streptococcus mitis group isolates was identified by the PCR approach and a comparison of sequencing PCR products (Streptococcus pneumoniae R6 as the control strain). Also, the evolutionary scenarios of these psaA genes in these streptococcus mitis group isolates were analyzed by a phylogenetic tree based on the housekeeping genes (sodA and rnpB) and psaA genes. As a result, a high degree of conservation of open reading frame sequences in all six Streptococcus pneumoniae strains (100% similarity) and in the other species of the streptococcus mitis group (92.6–100% similarity) was revealed. Further genetics research based on housekeeping genes and psaA gene phylogenies showed that the psaA gene was of vertical inheritance only in Streptococcus pneumoniae; however, high‐frequency horizontal psaA gene transfer and recombination occurred in the other species of the streptococcus mitis group. These findings confirmed that the psaA gene was not a Streptococcus pneumoniae species‐specific gene, and high‐frequency HGT and recombination events may explain the presence of the psaA gene in the other species of the streptococcus mitis group.  相似文献   

11.
A total of 12 non-epidemiologically related clinical isolates of Streptococcus mitis that showed different levels of resistance to penicillin were studied. Membrane-protein profiles and penicillin-binding protein (PBP) patterns showed a great polymorphism; and patterns of 4–7 PBPs, with sizes that ranged from ~101 kDa to ~40 kDa, were detected in each strain. No association could be found between PBP pattern and resistance level to penicillin among these isolates. Arbitrarily primed PCR confirmed the genetic diversity among this group of streptococci. One of the isolates of intermediate level of resistance to penicillin, which showed a PBP pattern similar to that of the high-resistance strains, was used as a laboratory model to analyse the mechanism underlying high-resistance acquisition by these strains. A 14-fold increase in penicillin resistance was obtained after a single selection step, which resulted in a decrease in penicillin affinity for PBP1. The size of this PBP (92 kDa) and the differences in PBP profiles of the penicillin-resistant clinical isolates suggest the existence in S. mitis of PBP-mediated mechanisms to acquire high-level resistance to penicillin, among which alterations in PBP1 seem to play a main role, in contrast to the PBP2X mediated mechanism described for other streptococci. Electronic Publication  相似文献   

12.
The genome of Streptococcus pneumoniae strains, as typified by the TIGR4 strain, contain several genes encoding proteins putatively involved in α‐glucan degradation, modification and synthesis. The extracellular components comprise an ATP binding cassette‐transporter with its solute binding protein, MalX, and the hydrolytic enzyme SpuA. We show that of the commonly occurring exogenous α‐glucans, S. pneumoniae TIGR4 is only able to grow on glycogen in a MalX‐ and SpuA‐dependent manner. SpuA is able to degrade glycogen into a ladder of α‐1,4‐glucooligosaccharides while the high‐affinity interaction (Ka ~ 106 M?1) of MalX with maltooligosaccharides plays a key role in promoting the selective uptake of the glycogen degradation products that are produced by SpuA. The X‐ray crystallographic analyses of apo‐ and complexed MalX illuminate the protein's specificity for the degradation products of glycogen and its striking ability to recognize the helical structure of the ligand. Overall, the results of this work provide new structural and functional insight into streptococcal α‐glucan metabolism while supplying biochemical support for the hypothesis that the substrate of the S. pneumoniaeα‐glucan metabolizing machinery is glycogen, which in a human host is abundant in lung epithelial cells, a common target for invasive S. pneumoniae.  相似文献   

13.
The gene responsible for the optochin-sensitive (OptS) phenotype of Streptococcus pneumoniae has been characterized. Sequence comparisons indicated that the genes involved encoded the subunits of the F0 complex of an H+-ATPase. Sequence analysis and transformation experiments showed that the atpC gene is responsible for the optochin-sensitive resistant (OptS/OptR) phenotype. Our results also show that natural as well as laboratory OptR isolates have arisen by point mutations that produce different amino acid changes at positions 48, 49 or 50 of the ATPase c subunit. The nucleotide sequence of the F F0 complex of the Streptococcus oralis ATPase has also been determined. In addition, comparison of the sequence of the atpCAB genes of S. pneumoniae R6 (OptS) and M222 (an OptR strain produced by inter-species recombination between pneumococcus and S. oralis), and S. oralis revealed that, in M222, an interchange of atpC and atpA had occurred. We also demonstrate that optochin specifically inhibited the membrane-bound ATPase activity of the S. pneumoniae wild-type (OptS) strains, and found a 100-fold difference between OptS and OptR strains, both in growth inhibition and in membrane ATPase resistance.  相似文献   

14.
15.
16.
Shigella sonnei , which has generally been associated with dysentery in developed countries, has recently been emerging in developing countries. Specifically, in Brazil few published studies have that molecularly characterized this species. The aims of this study were to analyze the efficacy of typing using multiple‐locus variable‐number tandem‐repeat analysis (MLVA), study the phylogeny by multi‐locus sequence typing (MLST) and assess the presence of some beta‐lactam resistance genes in S. sonnei strains isolated from human diarrhoeic faeces in the São Paulo State in Brazil between 1983 and 2014. Seventy‐two such S. sonnei strains were typed by MLVA and grouped into two clusters. The discrimination index of MLVA was found to be 0.996. Twenty strains were typed by MLST as ST152. In addition, the bla TEM gene was detected in eight (72.7%) of the 11 S. sonnei strains that had previously been shown to be resistant to β‐lactams. However, bla CTX‐M‐1group, bla CTX‐M‐9group and bla SHV genes were not found. MLVA results suggested the existence of two prevalent subtypes in the S. sonnei strains studied, confirming previous results. Moreover, MLVA efficiently discriminated monomorphic S. sonnei species. Because the S. sonnei strains studied belonged to clonal complex 152 and all isolates were typed as ST152, MLST is not a suitable method for studying the population structure of S. sonnei . Although, the rates of β‐lactam resistance were not high in the present study, the frequency of bla TEM may represent a risk for patients receiving antimicrobial treatment. Taken together, the results provide better molecular characterization of this globally clinically important pathogen.
  相似文献   

17.

Background

Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group.

Results

Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes - genes present in more than one strain but not in all strains - was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence.

Conclusions

Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan-genome guarantees the species a quick and economical response to diverse environments.  相似文献   

18.
【目的】调查野生鸟类携带菌的耐药状况,探索其在细菌耐药性传播过程中的作用。【方法】从野生鸟类石鸡、绯胸鹦鹉、太阳锥尾鹦鹉和黑领椋鸟的新鲜粪便分离4株Klebsiella pneumoniae,采用微量肉汤稀释法评估其多重耐药表型,并利用全基因组测序技术和细菌全因组关联分析、比较基因组学方法对分离株进行分子溯源,系统解析其携带的多重耐药质粒或基因与其宿主、同源质粒间的关联。【结果】4株肺炎克雷伯菌的耐药谱各不相同,来自石鸡样本的分离株S90-2对9种药物耐受,绯胸鹦鹉样本分离株S141对3种药物耐受,太阳锥尾鹦鹉分离株M911-1仅耐受氨苄西林,黑领椋鸟的样本分离株S130-1对所使用的14种药物完全敏感。S90-2属于ST629型,携带blaCTX-M-14fosA6aac(3)-IidblaSHV-11为主的30个耐药基因和携带1个耐药性质粒pS90-2.3 (IncR型)。S141属于ST1662型,携带fosA5blaSHV-217等27个耐药基因,1个质粒pS141.1 [IncFIB(K)(pCAV1099-114)/repB型]仅携带耐药基因adeF。M911-1为新ST类型,携带blaSHV-1fosA6等共计27个耐药基因,其质粒pM911-1.1携带了3个耐药基因。S130-1属于ST3753型,携带blaSHV-11fosA6等27个耐药基因,pS130-1 [IncFIB(K)型]则仅携带一个耐药基因tet(A)。质粒比对表明,质粒pS90-2.3携带的耐药基因片段源自不同的肠杆菌科菌株染色体或质粒。pS90-2.3的同源质粒主要来自人类宿主菌,且主要在中国分布,这些质粒主要细菌宿主为K. pneumoniaeEscherichia coli,且ST11型K. pneumoniae分离株为重要宿主菌。【结论】本研究中来自野生鸟类的多重耐药K. pneumoniae,其耐药基因主要来自质粒,质粒耐药基因主要由转座子、插入序列、整合子和前噬菌体等可移动元件介导,这些多重耐药质粒与人类的宿主菌密切相关。  相似文献   

19.
Bypass of the penicillin‐binding proteins by an l ,d ‐transpeptidase (Ldtfm) confers cross‐resistance to β‐lactam and glycopeptide antibiotics in mutants of Enterococcus faecium selected in vitro. Ldtfm is produced by the parental strain D344S although it insignificantly contributes to peptidoglycan cross‐linking as pentapeptide stems cannot be used as acyl donors by this enzyme. Here we show that production of the tetrapeptide substrate of Ldtfm is controlled by a two‐component regulatory system (DdcRS) and a metallo‐d ,d ‐carboxypeptidase (DdcY). The locus was silent in D344S and its activation was due to amino acid substitutions in DdcS or DdcR that led to production of DdcY and hydrolysis of the C‐terminal d ‐Ala residue of the cytoplasmic peptidoglycan precursor UDP‐MurNAc‐pentapeptide. The T161A and T161M substitutions affected a position of DdcS known to be essential for the phosphatase activity of related sensor kinases. Complete elimination of UDP‐MurNAc‐pentapeptide, which was required specifically for resistance to glycopeptides, involved substitutions in DdcY that increased the catalytic efficiency of the enzyme (E127K) and affected its interaction with the cell envelope (I14N). The ddc locus displays striking similarities with portions of the van vancomycin resistance gene clusters, suggesting possible routes of emergence of cross‐resistance to glycopeptides and β‐lactams in natural conditions.  相似文献   

20.
Streptococcus mitis has emerged as one of the leading causes of bacterial endocarditis and is related to Streptococcus pneumoniae. Antibiotic resistance has also increased among strains of S. mitis and S. pneumoniae. Phages are being reinvestigated as alternatives to antibiotics for managing infections. In this study, the two virulent phages Cp-1 (Podoviridae) and Dp-1 (Siphoviridae), previously isolated from S. pneumoniae, were found to also infect S. mitis. Microbiological assays showed that both pneumophages could not only replicate in S. mitis but also produced more visible plaques on this host. However, the burst size and phage adsorption data were lower in S. mitis as compared to S. pneumoniae. A comparison of the genomes of each phage grown on both hosts produced identical nucleotide sequences, confirming that the same phages infect both bacterial species. We also discovered that the genomic sequence of podophage Cp-1 of the Félix d’Hérelle collection is different than the previously reported sequence and thus renamed SOCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号