首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The power conversion efficiency of poly(N‐(2‐ethylhexyl)‐3,6‐bis(4‐dodecyloxythiophen‐2‐yl)phthalimide) (PhBTEH)/fullerene bulk heterojunction solar cells improves from 0.43 to 4.1% by using a processing additive. The underlying mechanism for the almost 10‐fold enhancement in solar cell performance is found to be inhibition of fullerene intercalation into the polymer side chains and regulation of the relative crystallization/aggregation rates of the polymer and fullerene. An optimal interconnected two‐phase morphology with 15–20 nm domains is obtained when a processing additive is used compared with 100–300 nm domains without the additive. The results demonstrate that a processing additive provides an effective means of controlling both the fullerene intercalation in polymer/fullerene blends and the domain sizes of their phase‐separated nanoscale morphology.  相似文献   

2.
A high electron mobility polymer, poly{[N,N’‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5’‐(2,2’‐bithiophene) (P(NDI2OD‐T2)) is investigated for use as an electron acceptor in all‐polymer blends. Despite the high bulk electron mobility, near‐infrared absorption band and compatible energy levels, bulk heterojunction devices fabricated with poly(3‐hexylthiophene) (P3HT) as the electron donor exhibit power conversion efficiencies of only 0.2%. In order to understand this disappointing photovoltaic performance, systematic investigations of the photophysics, device physics and morphology of this system are performed. Ultra‐fast transient absorption spectroscopy reveals a two‐stage decay process with an initial rapid loss of photoinduced polarons, followed by a second slower decay. This second slower decay is similar to what is observed for efficient P3HT:PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) blends, however the initial fast decay that is absent in P3HT:PCBM blends suggests rapid, geminate recombination of charge pairs shortly after charge transfer. X‐ray microscopy reveals coarse phase separation of P3HT:P(NDI2OD‐T2) blends with domains of size 0.2 to 1 micrometer. P3HT photoluminescence, however, is still found to be efficiently quenched indicating intermixing within these mesoscale domains. This hierarchy of phase separation is consistent with the transient absorption, whereby localized confinement of charges on isolated chains in the matrix of the other polymer hinders the separation of interfacial electron‐hole pairs. These results indicate that local, interfacial processes are the key factor determining the overall efficiency of this system and highlight the need for improved morphological control in order for the potential benefit of high‐mobility electron accepting polymers to be realized.  相似文献   

3.
In this work, the detailed morphology studies of polymer poly(3‐hexylthiophene‐2,5‐diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all‐polymer solar cells. The in situ X‐ray scattering and optical interferometry and ex situ hard and soft X‐ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the ex situ grazing incidence X‐ray diffraction and soft X‐ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.  相似文献   

4.
Polymer bulk heterojunction solar cells based on low bandgap polymer:fullerene blends are promising for next generation low‐cost photovoltaics. While these solution‐processed solar cells are compatible with large‐scale roll‐to‐roll processing, active layers used for typical laboratory‐scale devices are too thin to ensure high manufacturing yields. Furthermore, due to the limited light absorption and optical interference within the thin active layer, the external quantum efficiencies (EQEs) of bulk heterojunction polymer solar cells are severely limited. In order to produce polymer solar cells with high yields, efficient solar cells with a thick active layer must be demonstrated. In this work, the performance of thick‐film solar cells employing the low‐bandgap polymer poly(dithienogermole‐thienopyrrolodione) (PDTG‐TPD) was demonstrated. Power conversion efficiencies over 8.0% were obtained for devices with an active layer thickness of 200 nm, illustrating the potential of this polymer for large‐scale manufacturing. Although an average EQE > 65% was obtained for devices with active layer thicknesses > 200 nm, the cell performance could not be maintained due to a reduction in fill factor. By comparing our results for PDTG‐TPD solar cells with similar P3HT‐based devices, we investigated the loss mechanisms associated with the limited device performance observed for thick‐film low‐bandgap polymer solar cells.  相似文献   

5.
In this work, a new combination of a wide bandgap polymer poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]‐dithiophene‐alt‐N‐(2‐hexyldecyl)‐5′5‐bis[3‐(decylthio)thiophene‐2‐yl]‐2′2‐bithiophene‐3′3‐dicarboximide] (PBTIBDTT) and a non‐fullerene small molecule acceptor based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile groups with one fluorine substituent (ITIC‐F) is proposed, and as‐cast non‐fullerene organic solar cells (NFOSCs) with 11.2% efficiency are achieved. The device efficiencies are also insensitive to the variation of photoactive layer (PAL) thickness and can maintain over 9% efficiency as PAL thickness increases to 350 nm, which is one of the best results for as‐cast organic solar cells. More importantly, non‐fullerene organic photovoltaic (OPV) modules are demonstrated via laser ablation technique for the first time, which delivers a record efficiency of 8.6% (with active area of 3.48 cm2) among large‐area OPV modules. Furthermore, the morphology and performance evolutions of the as‐cast NFOSCs and the ones processed with solvent additive are systematically investigated. The results demonstrate the great advantage of as‐cast solar cells in achieving constant morphology and high performance with thick PALs. The NFOSCs fabricated with simple procedure, insensitive to film thickness and compatible with large‐area OPV modules, show significant potential for application the future.  相似文献   

6.
The authors present efficient all‐polymer solar cells comprising two different low‐bandgap naphthalenediimide (NDI)‐based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near‐field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large‐scale phase‐separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donor–acceptor heterojunction.  相似文献   

7.
We report on the effects of screening of the electric field by doping‐induced mobile charges on photocurrent collection in operational organic solar cells. Charge transport and recombination were studied using double injection (DI) and charge extraction by linearly increasing voltage (CELIV) transient techniques in bulk‐heterojunction solar cells made from acceptor‐donor blends of poly(3‐n‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM). It is shown that the screening of the built‐in field in operational solar cells can be controlled by an external voltage while the influence on charge transport and recombination is measured. An analytical theory to extract the bimolecular recombination coefficient as a function of electric field from the injection current is also reported. The results demonstrate that the suppressed (non‐Langevin) bimolecular recombination rate and charge collection are not strongly affected by native doping levels in this materials combination. Hence, it is not necessary to reduce the level of doping further to improve the device performance of P3HT‐based solar cells.  相似文献   

8.
Design rules are presented for significantly expanding sequential processing (SqP) into previously inaccessible polymer:fullerene systems by tailoring binary solvent blends for fullerene deposition. Starting with a base solvent that has high fullerene solubility, 2‐chlorophenol (2‐CP), ellipsometry‐based swelling experiments are used to investigate different co‐solvents for the fullerene‐casting solution. By tuning the Flory‐Huggins χ parameter of the 2‐CP/co‐solvent blend, it is possible to optimally swell the polymer of interest for fullerene interdiffusion without dissolution of the polymer underlayer. In this way solar cell power conversion efficiencies are obtained for the PTB7 (poly[(4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)(3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl)]) and PC61BM (phenyl‐C61‐butyric acid methyl ester) materials combination that match those of blend‐cast films. Both semicrystalline (e.g., P3HT (poly(3‐hexylthiophene‐2,5‐diyl)) and entirely amorphous (e.g., PSDTTT (poly[(4,8‐di(2‐butyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐(2,5‐bis(4,4′‐bis(2‐octyl)dithieno[3,2‐b:2′3′‐d]silole‐2,6‐diyl)thiazolo[5,4‐d]thiazole)]) conjugated polymers can be processed into highly efficient photovoltaic devices using the solvent‐blend SqP design rules. Grazing‐incidence wide‐angle x‐ray diffraction experiments confirm that proper choice of the fullerene casting co‐solvent yields well‐ordered interdispersed bulk heterojunction (BHJ) morphologies without the need for subsequent thermal annealing or the use of trace solvent additives (e.g., diiodooctane). The results open SqP to polymer/fullerene systems that are currently incompatible with traditional methods of device fabrication, and make BHJ morphology control a more tractable problem.  相似文献   

9.
Charge‐transfer (CT) state electroluminescence is investigated in several polymer:fullerene bulk heterojunction solar cells. The ideality factor of the electroluminescence reveals that the CT emission in polymer:fullerene solar cells originates from free‐carrier bimolecular recombination at the donor‐acceptor interface, rather than a charge‐trap‐mediated process. The fingerprint of the presence of nonradiative trap‐assisted recombination, a voltage‐dependent CT electroluminescence quantum efficiency, is only observed for the P3HT:PCBM system, which is explained by a reduction of the competing bimolecular recombination rate. These results are in agreement with measurements of the illumination‐intensity dependence of the open‐circuit voltage.  相似文献   

10.
Organic bulk heterojunction photovoltaic devices predominantly use the fullerene derivatives [C60]PCBM and [C70]PCBM as the electron accepting component. This report presents a new organic electron accepting small molecule 2‐[{7‐(9,9‐di‐n‐propyl‐9H‐fluoren‐2‐yl)benzo[c][1,2,5]thiadiazol‐4‐yl}methylene]malononitrile (K12) for organic solar cell applications. It can be processed by evaporation under vacuum or by solution processing to give amorphous thin films and can be annealed at a modest temperature to give films with much greater order and enhanced charge transport properties. The molecule can efficiently quench the photoluminescence of the donor polymer poly(3‐n‐hexylthiophene‐2,5‐diyl) (P3HT) and time resolved microwave conductivity measurements show that mobile charges are generated indicating that a truly charge separated state is formed. The power conversion efficiencies of the photovoltaic devices are found to depend strongly on the acceptor packing. Optimized K12:P3HT bulk heterojunction devices have efficiencies of 0.73±0.01% under AM1.5G simulated sunlight. The efficiencies of the devices are limited by the level of crystallinity and nanoscale morphology that was achievable in the blend with P3HT.  相似文献   

11.
It is demonstrated that a combination of microsecond transient photocurrent measurements and film morphology characterization can be used to identify a charge‐carrier blocking layer within polymer:fullerene bulk‐heterojunction solar cells. Solution‐processed molybdenum oxide (s‐MoOx) interlayers are used to control the morphology of the bulk‐heterojunction. By selecting either a low‐ or high‐temperature annealing (70 °C or 150 °C) for the s‐MoOx layer, a well‐performing device is fabricated with an ideally interconnected, high‐efficiency morphology, or a device is fabricated in which the fullerene phase segregates near the hole extracting contact preventing efficient charge extraction. By probing the photocurrent dynamics of these two contrasting model systems as a function of excitation voltage and light intensity, the optoelectronic responses of the solar cells are correlated with the vertical phase composition of the polymer:fullerene active layer, which is known from dynamic secondary‐ion mass spectroscopy (DSIMS). Numerical simulations are used to verify and understand the experimental results. The result is a method to detect poor morphologies in operating organic solar cells.  相似文献   

12.
Photovoltaic performance of polymer solar cells based on poly(3‐hexylthiophene) (P3HT) as the donor and indene‐C70 bisadduct (IC70BA) as the acceptor is improved by adding 3 vol% 3‐methylthiophene (MT) or 3‐hexylthiophene (HT) as processing additives. The results of UV‐vis absorption spectroscopy, X‐ray diffraction analysis and atomic force microscopy indicate that with the MT or HT processing additive, the active layer of the blend of P3HT/IC70BA showed strengthened absorbance, enhanced crystallinity and improved film morphology. The power conversion efficiency (PCE) of the PSCs was improved from 5.80% for the device without the additive to 6.35% for the device with HT additive and to 6.69% with MT additive. The PCE of 6.69% is the top value reported so far for the PSCs based on P3HT.  相似文献   

13.
Selective dye loading at the polymer/fullerene interface was studied for ternary blend bulk heterojunction solar cells, consisting of regioregular poly(3‐hexylthiophene) (RR‐P3HT), a fullerene derivative (PCBM), and a silicon phthalocyanine derivative (SiPc) as a light‐harvesting dye. The photocurrent density and power conversion efficiency of the ternary blend solar cells were most improved by loading SiPc with a content of 4.8 wt%. The absorption and surface energy measurements suggested that SiPc is located in the disordered P3HT domains at the RR‐P3HT/PCBM interface rather than in the PCBM and crystal P3HT domains. From the peak wavelength of SiPc absorption, the local concentration of SiPc ([SiPc]Local) was estimated for the RR‐P3HT:PCBM:SiPc ternary blends. Even for amorphous films of regiorandom P3HT (RRa‐P3HT) blended with PCBM and SiPc, [SiPc]Local was higher than the original content, suggesting dye segregation into the RRa‐P3HT/PCBM interface. For RR‐P3HT:PCBM:SiPc blends, [SiPc]Local increased with the increase in the P3HT crystallinity. Such interfacial segregation of dye molecules in ternary blend films can be rationally explained in terms of the surface energy of each component and the crystallization of P3HT being enhanced by annealing. Notably, the solvent annealing effectively segregated dye molecules into the interface without the formation of PCBM clusters.  相似文献   

14.
Organic bulk heterojunction photovoltaic devices predominantly use the fullerene derivatives [C60]PCBM and [C70]PCBM as the electron accepting component. This report presents a new organic electron accepting small molecule 2‐[{7‐(9,9‐di‐n‐propyl‐9H‐fluoren‐2‐yl)benzo[c][1,2,5]thiadiazol‐4‐yl}methylene]malononitrile (K12) for organic solar cell applications. It can be processed by evaporation under vacuum or by solution processing to give amorphous thin films and can be annealed at a modest temperature to give films with much greater order and enhanced charge transport properties. The molecule can efficiently quench the photoluminescence of the donor polymer poly(3‐n‐hexylthiophene‐2,5‐diyl) (P3HT) and time resolved microwave conductivity measurements show that mobile charges are generated indicating that a truly charge separated state is formed. The power conversion efficiencies of the photovoltaic devices are found to depend strongly on the acceptor packing. Optimized K12:P3HT bulk heterojunction devices have efficiencies of 0.73±0.01% under AM1.5G simulated sunlight. The efficiencies of the devices are limited by the level of crystallinity and nanoscale morphology that was achievable in the blend with P3HT.  相似文献   

15.
Dithienogermole‐co‐thieno[3,4‐c]pyrroledione (DTG‐TPD) polymers incorporating chemically cross‐linkable sidechains are reported and their properties compared to a parent polymer with simple octyl sidechains. Two cross‐linking groups and mechanisms are investigated, UV‐promoted radical cross‐linking of an alkyl bromide cross‐linker and acid‐promoted cationic cross‐linking of an oxetane cross‐linker. It is found that random copolymers with a 20% incorporation of the cross‐linker demonstrate a higher performance in bulk heterojunction solar cells than the parent polymer, while 100% cross‐linker incorporation results in deterioration in device efficiency. The use of 1,8‐diiodooctane (DIO) as a processing additive improves as‐cast solar cell performance, but is found to have a significant deleterious impact on solar cell efficiency after UV exposure. The instability to UV can be overcome by the use of an alternative additive, 1‐chloronapthalene, which also promotes high device efficiency. Cross‐linking of the polymer is investigated in the presence and absence of fullerene highlighting significant differences in behavior. Intractable films cannot be obtained by radical cross‐linking in the presence of fullerene, whereas cationic cross‐linking is successful.  相似文献   

16.
The development of non‐fullerene‐based electron acceptors (especially organic molecules with sufficient absorption property within the solar spectrum region) for bulk‐heterojunction (BHJ) organic solar cells (OSCs) is an important issue for the achievement of high photoconversion efficiency. In this contribution, a new class of organic acceptors di‐cyan substituted quinacridone derivatives (DCN‐nCQA, n = 4, 6 and 8) for BHJ solar cells was designed and synthesized. DCN‐nCQA molecules possess facile synthesis, solution processability, visible and near‐IR light absorption and relatively stable characteristics. The DCN‐8CQA molecule exhibited a proper LUMO energy level (–4.1 eV), small bandgap (1.8 eV) and moderate electron mobility (10?4 cm2 V?1 S?1), suggesting that this molecule is an ideal acceptor material for the classical donor material regio‐regular poly (3‐hexylthiophene) (P3HT). A photovoltaic device with a structure of [ITO/PEDOT:PSS/P3HT:DCN‐8CQA/LiF/Al] displayed a power conversion efficiency of 1.57% and a fill factor of 57% under 100 mW cm?2 AM 1.5G simulated solar illumination. The DCN‐nCQA molecules showed remarkable absorption in the region from 650 to 700 nm, where P3HT has a weak absorption promoting overlap with the solar spectrum and potentially improving the performance of the solar cell.  相似文献   

17.
A facile and low‐temperature (125 °C) solution‐processed Al‐doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates is described. The ammonia‐treatment of the aqueous AZO nanoparticle solution produces compact, crystalline, and smooth thin films, which retain the aluminum doping, and eliminates/reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical modifications of the buffer layer, which is a common requirement for many metal oxide buffer layers to yield efficient solar cells. Also highly efficient solar cells are achieved with thick AZO films (>50 nm), highlighting the suitability of this material for roll‐to‐roll coating. Preliminary results on the applicability of AZO as electron injection layer in F8BT‐based polymer light emitting diode are also presented.  相似文献   

18.
Single‐walled carbon nanotube (SWCNT) fullerene solar cells have recently attracted attention due to their low‐cost processing, high environmental stability, and near‐infrared absorption. While SWCNT–fullerene bulk‐heterojunction photovoltaics employing an inverted architecture and polychiral SWCNTs have achieved efficiencies exceeding 3% over device areas of ≈1 mm2, large‐area SWCNT solar cells have not yet been demonstrated. In particular, with increasing device area, spatial inhomogeneities in the SWCNT film have limited overall device performance. Here, 1,8‐diiodooctane (DIO) is utilized as a solvent additive to reduce fullerene domain size and to improve SWCNT–fullerene bulk‐heterojunction morphology. Under optimized conditions, DIO elucidates the influence of SWCNT chiral distribution on overall device performance, revealing a tradeoff between short‐circuit current density and fill factor as a function of the chirality distribution present. The combination of SWCNT chirality distribution engineering and improved spatial homogeneity via solvent additives enables area‐scaling of SWCNT–fullerene solar cells with performance comparable to small‐area cells.  相似文献   

19.
The interplay between nanomorphology and efficiency of polymer‐fullerene bulk‐heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small‐molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2‐b:4,5‐b]dithiophene‐pyrido[3,4‐b]‐pyrazine BDT(PPTh2)2, namely SM1 and SM2, differing by their side‐chains, are examined as a function of solution additive composition. The results show that the additive 1,8‐diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM‐based BHJ solar cells compared with polymer‐fullerene devices. In polymer‐based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM‐based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.  相似文献   

20.
Understanding and controlling the morphology of donor/acceptor blends is critical for the development of solution processable organic solar cells. By crosslinking a poly(3‐n‐hexylthiophene‐2,5‐diyl) (P3HT) film we have been able to spin‐coat [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) onto the film to form a structure that is close to a bilayer, thus creating an ideal platform for investigating interdiffusion in this model system. Neutron reflectometry (NR) demonstrates that without any thermal treatment a smaller amount of PCBM percolates throughout the crosslinked P3HT when compared to a non‐crosslinked P3HT film. Using time‐resolved NR we also show thermal annealing increases the rate of diffusion, resulting in a near‐uniform distribution of PCBM throughout the polymer film. XPS measurements confirm the presence of both P3HT and PCBM at the annealed film's surface indicating that the two components are intermixed. Photovoltaic devices fabricated using this bilayer approach and suitable annealing conditions yielded comparable power conversion efficiencies to bulk heterojunction devices made from the same materials. The crosslinking procedure has also enabled the formation of patterned P3HT films by photolithography. Pillars with feature sizes down to 2 μm were produced and after subsequent deposition of PCBM and thermal annealing devices with efficiencies of up to 1.4% were produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号