首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hyphae of filamentous Ascomycota consist of compartments that are connected via septal pores. To avoid a dramatic loss of cellular content after wounding, fungi developed mechanisms to occlude their septal pores. In most Pezizomycotina, so‐called Woronin bodies are anchored in proximity to the pore. This is a prominent example for precise spatial positioning of organelles, but so far the underlying molecular organization has remained largely unknown. Using the pathogenic mould Aspergillus fumigatus, we provide evidence that Woronin bodies are important for stress resistance and virulence. Furthermore the molecular machinery anchoring them at the septum is described. Namely, we have identified Lah as the tethering protein and provide evidence that the Woronin body protein HexA binds to the septal pore in a Lah‐dependent manner. Moreover, we demonstrate that a striking poly‐histidine motif targets HexA to the septal cell wall. Thus, the axis HexA‐Lah is an excellent candidate for the tether linking Woronin bodies to the septum. This model applies to A. fumigatus, but most likely also to the vast majority of the Pezizomycotina. Our findings shed light on the evolution of Woronin body anchoring and provide a basis for the development of novel strategies to combat fungal pathogens like A. fumigatus.  相似文献   

2.
Hyphae of higher fungi are compartmentalized by septa. These septa contain a central pore that allows for inter‐compartmental and inter‐hyphal cytoplasmic streaming. The cytoplasm within the mycelium is therefore considered to be a continuous system. In this study, however, we demonstrate by laser dissection that 40% of the apical septa of exploring hyphae of Aspergillus oryzae are closed. Closure of septa correlated with the presence of a peroxisome‐derived organelle, known as Woronin body, near the septal pore. The location of Woronin bodies in the hyphae was dynamic and, as a result, plugging of the septal pore was reversible. Septal plugging was abolished in a ΔAohex1 strain that cannot form Woronin bodies. Notably, hyphal heterogeneity was also affected in the ΔAohex1 strain. Wild‐type strains of A. oryzae showed heterogeneous distribution of GFP between neighbouring hyphae at the outer part of the colony when the reporter was expressed from the promoter of the glucoamylase gene glaA or the α‐glucuronidase gene aguA. In contrast, GFP fluorescence showed a normal distribution in the case of the ΔAohex1 strain. Taken together, it is concluded that Woronin bodies maintain hyphal heterogeneity in a fungal mycelium by impeding cytoplasmic continuity.  相似文献   

3.
Peroxisome-derived Woronin bodies of the Ascomycota phyla, and the endoplasmic reticulum (ER)-derived septal pore cap (SPC) of the Basidiomycota, are both fungal organelles that prevent cytoplasmic bleeding when multicellular hyphal filaments are wounded. Analysis of Woronin body constituent proteins suggests that these organelles evolved in part through gene duplication and co-opting of non-essential genes for new functions, indicating that new organelles can arise through typical evolutionary mechanisms. Interestingly, clades possessing the Woronin body and SPC also produce the largest and most complex multicellular fungal reproductive structures. Certain Woronin body and SPC mutants have defects in growth and development, suggesting functions beyond cellular wound healing. I argue that studying these specialized systems will help to reveal the basis for fungal diversity and provide general principles for co-evolution of organelles and multicellular complexity.  相似文献   

4.
Summary Woronin bodies are cytoplasmic organelles which commonly lie near the septa in ascomycetous fungi. Although these organelles were observed nearly 100 years ago, little is known about their origin and development. The present ultrastructural investigation describes the ontogeny of Woronin bodies inFusarium oxysporum f. sp.lycopersici [Sacc.] Snyd. and Hans. In this fungus, Woronin bodies are produced by microbodies. Development of the Woronin body begins with the appearance of electron dense material within the microbody. This material aggregates adjacent to the membrane of the microbody and condenses into a single paracrystalline inclusion. Following its formation, the inclusion is gradually extruded and is eventually separated from the parent organelle by an exocytotic mechanism. After the separation, the paracrystalline inclusion is found at the septal pore. Although many recent electron microscopic studies have used various terms to designate these membrane bound organelles, inFusarium these inclusions are believed to correspond to the Woronin bodies initially described by light microscopists.  相似文献   

5.
Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)‐derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre‐labeled neural cells, especially in three‐dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC‐derived multicellular NPC aggregates labeled with micron‐sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70–80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post‐cryopreservation. MRI analysis showed comparable detectability for the MPIO‐labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO‐labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:510–521, 2015  相似文献   

6.
Woronin bodies of filamentous fungi   总被引:7,自引:0,他引:7  
  相似文献   

7.
Iron is a key trace element important for many biochemical processes and its availability varies with the environment. For human pathogenic fungi iron acquisition can be particularly problematical because host cells sequester free iron as part of the acute‐phase response to infection. Fungi rely on high‐affinity iron uptake systems, such as reductive iron assimilation (RIA) and siderophore‐mediated iron uptake (non‐RIA). These have been extensively studied in pathogenic fungi that exist outside of host cells, but much less is known for intracellular fungal pathogens. Talaromyces marneffei is a dimorphic fungal pathogen endemic to Southeast Asia. In the host T. marneffei resides within macrophages where it grows as a fission yeast. T. marneffei has genes of both iron assimilation systems as well as a paralogue of the siderophore biosynthetic gene sidA, designated sidX. Unlike other fungi, deletion of sidA or sidX resulted in cell type‐specific effects. Mutant analysis showed that T. marneffei yeast cells also employ RIA for iron acquisition, providing an additional system in this cell type that differs substantially from hyphal cells. These data illustrate the specialized iron acquisition systems used by the different cell types of a dimorphic fungal pathogen and highlight the complexity in siderophore‐biosynthetic pathways amongst fungi.  相似文献   

8.
Calvo MA  Agut M 《Mycopathologia》2002,153(3):137-139
Woronin bodies are cytoplasmic organelles of filamentous fungi that can be observed on one, or both sides of each septum. The goal of this paper is to illustrate the presence of them in hyphae of Arthrinium aureum by means of scanning electron microscopy and to show that they act as a safety plug to close septa pores in hypha. Results show that Woronin bodies as an immediate response to prevent a cytoplasm loss. Results support hypothesis proposed previously in literature. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Myxococcus xanthus is a myxobacterium that exhibits aggregation and cellular differentiation during the formation of fruiting bodies. Therefore, it has become a valuable model system to study the transition to multicellularity via cell aggregation. Although there is a vast set of experimental information for the development on M. xanthus, the dynamics behind cell‐fate determination in this organism's development remain unclear. We integrate the currently available evidence in a mathematical network model that allows to test the set of molecular elements and regulatory interactions that are sufficient to account for the specification of the cell types that are observed in fruiting body formation. Besides providing a dynamic mechanism for cell‐fate determination in the transition to multicellular aggregates of M. xanthus, this model enables the postulation of specific mechanisms behind some experimental observations for which no explanations have been provided, as well as new regulatory interactions that can be experimentally tested. Finally, this model constitutes a formal basis on which the continuously emerging data for this system can be integrated and interpreted.  相似文献   

10.
The Woronin body is a Pezizomycotina-specific organelle that is typically tethered to the septum, but upon hyphal wounding, it plugs the septal pore to prevent excessive cytoplasmic loss. Leashin (LAH) is a large Woronin body tethering protein that contains highly conserved N- and C-terminal regions and a long (∼2,500-amino-acid) nonconserved middle region. As the involvement of the nonconserved region in Woronin body function has not been investigated, here, we functionally characterized individual regions of the LAH protein of Aspergillus oryzae (AoLAH). In an Aolah disruptant, no Woronin bodies were tethered to the septum, and hyphae had a reduced ability to prevent excessive cytoplasmic loss upon hyphal wounding. Localization analysis revealed that the N-terminal region of AoLAH associated with Woronin bodies dependently on AoWSC, which is homologous to Neurospora crassa WSC (Woronin body sorting complex), and that the C-terminal region was localized to the septum. Elastic movement of Woronin bodies was observed when visualized with an AoLAH N-terminal-region–enhanced green fluorescent protein (EGFP) fusion protein. An N- and C-terminal fusion construct lacking the nonconserved middle region of AoLAH was sufficient for the tethering of Woronin bodies to the septum. However, Woronin bodies were located closer to the septum and exhibited impaired elastic movement. Moreover, expression of middle-region-deleted AoLAH in the Aolah disruptant did not restore the ability to prevent excessive cytoplasmic loss. These findings indicate that the nonconserved middle region of AoLAH has functional importance for regulating the position, movement, and function of Woronin bodies.  相似文献   

11.
The Woronin body is a membrane-bound organelle that has been observed in over 50 species of filamentous fungi. However, neither the composition nor the precise function of the Woronin body has yet been determined. Here we purify the Woronin body from Neurospora crassa and isolate Hex1, a new protein containing a consensus sequence known as peroxisome-targeting signal-1 (PTS1). We show that Hex1 is localized to the matrix of the Woronin body by immunoelectron microscopy, and that a green fluorescent protein- (GFP-)Hex1 fusion protein is targeted to yeast peroxisomes in a PTS1- and peroxin-dependent manner. The expression of the HEX1 gene in yeast generates hexagonal vesicles that are morphologically similar to the native Woronin body, implying a Hex1-encoded mechanism of Woronin-body assembly. Deletion of HEX1 in N. crassa eliminates Woronin bodies from the cytoplasm and results in hyphae that exhibit a cytoplasmic-bleeding phenotype in response to cell lysis. Our results show that the Woronin body represents a new category of peroxisome with a function in the maintenance of cellular integrity.  相似文献   

12.
The colony of a filamentous ascomycete fungus typically grows as a multinucleate syncytium. While this syncytial organization has developmental advantages, it bears the risk of extensive damage caused by local injury of hyphae. Loss of cytoplasm in injured hyphae is restricted by the fast and efficient sealing of the central pores of hyphal crosswalls, or septa, by a peroxisome-derived organelle called the Woronin body. The formation of septal plugs is also associated with development and leads to separation of certain parts of the colony. Septal plugs associated with developmental processes or aging hyphae typically occur by the accumulation of sealing material. Here we report that in Neurospora crassa, a protein necessary for hyphal fusion and proper colony development called SO (SOFT) localizes to septal plugs. In response to injury, SO accumulates at the septal plug in a Woronin body-independent manner. However, the presence of the Woronin body affects the speed of accumulation of SO at the septal pore. We determined that SO contributes to, but is not essential for, septal plugging. SO accumulation was also observed at septal plugs formed during hyphal aging and during programmed cell death mediated by genetic differences at heterokaryon incompatibility (het) loci.  相似文献   

13.
Colonisation of the body surface of healthy subjects by Staphylococcus aureus is mostly harmless because the immune system limits bacterial growth. Under as yet unknown circumstances, however, previously commensal bacteria may become pathogenic by rapid proliferation and density‐dependent generation of virulence factors that negatively affect the surrounding eukaryotic host cells. One of the most problematic virulence factors of Staphylococcus aureus is alpha‐toxin (hemolysin A, Hla). This toxin forms transmembrane pores in the plasma membranes of eukaryotic host cells. The inner diameter of the pore allows ions and small organic molecules to pass from the extracellular space to the cytosol or vice versa. The resulting dissipation of ion gradients as well as loss of energy‐rich molecules like ATP from the cells heavily disturbs host cell functions and signal transduction processes. In epithelial cells, these changes severely affect the polarized phenotype of the epithelial cells by restructuring of the actin cytoskeleton, inducing changes in cell shape and loosening cell‐cell adhesion which ultimately compromises the barrier function of the cell sheet. These effects of alpha‐toxin may provide an explanation why it is particularly Staphylococcus aureus that is involved in the onset of many cases of lung infections (pneumonia).  相似文献   

14.
《Chirality》2017,29(10):623-633
3‐Ethyl‐3‐phenylpyrrolidin‐2‐one ( EPP) is an experimental anticonvulsant based on the newly proposed α‐substituted amide group pharmacophore. These compounds show robust activity in animal models of drug‐resistant epilepsy and are thus promising for clinical development. In order to understand pharmaceutically relevant properties of such compounds, we are conducting an extensive investigation of their structures in the solid state. In this article, we report chiral high‐performance liquid chromatography (HPLC) separation, determination of absolute configuration of enantiomers, and crystal structures of EPP. Preparative resolution of EPP enantiomers by chiral HPLC was accomplished on the Chiralcel OJ stationary phase in the polar‐organic mode. Using a combination of electronic CD spectroscopy and anomalous dispersion of X‐rays we established that the first‐eluted enantiomer corresponds to (+)‐(R )‐EPP, while the second‐eluted enantiomer corresponds to (−)‐(S )‐EPP. We also demonstrated that, in the crystalline state, enantiopure and racemic forms of this anticonvulsant have considerable differences in their supramolecular organization and patterns of hydrogen bonding. These stereospecific structural differences can be related to the differences in melting points and, correspondingly, solubility and bioavailability.  相似文献   

15.
In tip‐confined growing pollen tubes, delivery of newly synthesized cell wall materials to the rapidly expanding apical surface requires spatial organization and temporal regulation of the apical F‐actin filament and exocytosis. In this study, we demonstrate that apical F‐actin is essential for the rigidity and construction of the pollen tube cell wall by regulating exocytosis of Nicotiana tabacum pectin methylesterase (NtPPME1). Wortmannin disrupts the spatial organization of apical F‐actin in the pollen tube tip and inhibits polar targeting of NtPPME1, which subsequently alters the rigidity and pectic composition of the pollen tube cell wall, finally causing growth arrest of the pollen tube. In addition to mechanistically linking cell wall construction and apical F‐actin, wortmannin can be used as a useful tool for studying endomembrane trafficking and cytoskeletal organization in pollen tubes.  相似文献   

16.
17.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

18.
Tolaasin, a pore‐forming peptide toxin produced by Pseudomonas tolaasii, causes brown blotch disease on cultivated mushrooms. Hemolysis using red blood cells was measured to evaluate the cytotoxicity of tolaasin. To investigate the mechanism of tolaasin‐induced cell disruption, we studied the effect of temperature on the hemolytic process. At 4 °C, poor binding of the tolaasin molecules to the erythrocyte membrane was observed and most of the tolaasin molecules stayed in the solution. However, once tolaasin bound to erythrocytes at 37 °C and the temperature was decreased, complete hemolysis was observed even at 4 °C. These results indicate that tolaasin binding to cell membrane is temperature‐sensitive while tolaasin‐induced membrane disruption is less sensitive to temperature change. The effect of erythrocyte concentration was measured to understand the membrane binding and pore‐forming properties of tolaasin. The percentage of hemolysis measured by both hemoglobin release and cell lysis decreased as erythrocyte concentration increased in the presence of a fixed amount of tolaasin. The result shows that hemolysis is dependent on the amount of tolaasin and multiple binding of tolaasin is required for the hemolysis of a single cell. In analysis of dose‐dependence, the hemolysis was proportional to the tenth power of the amount of tolaasin, implying that tolaasin‐induced hemolysis can be explained by a multi‐hit model. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Apocarotenoids are widely distributed among living organisms (bacteria, fungi, algae, plants and even animals) and have been associated with several signaling functions. These compounds are generated by the activity of carotenoid cleavage dioxygenases (CCDs), whose diversity greatly contributes to the large number of apocarotenoids that have been described so far. It is nevertheless expected that a considerable diversity of these molecules is yet to be discovered. In this work, we describe the isolation and structural elucidation of the apocarotenoid 4‐oxo‐β‐apo‐13‐carotenone from the cultured freshwater cyanobacterium Anabaena cylindrica PCC 7122, corresponding to the first report of this compound from natural sources.  相似文献   

20.
The sugar nucleotide UDP‐N‐acetylglucosamine (UDP‐GlcNAc) is an essential metabolite in both prokaryotes and eukaryotes. In fungi, it is the precursor for the synthesis of chitin, an essential component of the fungal cell wall. U DP‐N‐a cetylglucosamine p yrophosphorylase (UAP) is the final enzyme in eukaryotic UDP‐GlcNAc biosynthesis, converting UTP and N‐acetylglucosamine‐1‐phosphate (GlcNAc‐1P) to UDP‐GlcNAc. As such, this enzyme may provide an attractive target against pathogenic fungi. Here, we demonstrate that the fungal pathogen Aspergillus fumigatus possesses an active UAP (AfUAP1) that shows selectivity for GlcNAc‐1P as the phosphosugar substrate. A conditional mutant, constructed by replacing the native promoter of the A. fumigatus uap1 gene with the Aspergillus nidulans alcA promoter, revealed that uap1 is essential for cell survival and important for cell wall synthesis and morphogenesis. The crystal structure of AfUAP1 was determined and revealed exploitable differences in the active site compared with the human enzyme. Thus AfUAP1 could represent a novel antifungal target and this work will assist the future discovery of small molecule inhibitors against this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号