首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppressor studies on ilvI mutants of Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
In order to answer the question whether with the X-ray induction of an achromatic lesion (a gap) an increase of the chromatid length is involved (e.g. by a localized failure of spiralization), the length ratios of 26 straight and 22 flexed metaphase chromosomes of Vicia faba were measured. (The length ratio is defined as the quotient between the length of the chromatid with a gap and that of its sister-chromatid without a gap.) Our results agree with the hypothesis that the induction of a gap does not increase the length of the chromatid. Remarkably in each of the 22 flexed chromosomes the gap was located at the “outer” chromatid. The bearing of our results on the nature of X-ray-induced achromatic lesions is discussed.  相似文献   

2.
Induction of dominant lethality by x-rays in radiosensitive strain of yeast   总被引:7,自引:0,他引:7  
X-Ray-survival curves of haploid, diploid, triploid and tetraploid yeast strains homozygous for the X-ray-sensitive mutation rad52 (previously xs1 are presented. These curves suggest that strains carrying the rad52 mutation may be more susceptible than wild type to X-ray-induced dominant lethal damage. For the crosses (+ × +, rad52 × rad52, + × rad52, rad52 × +) in which only one parent was irradiated, the relationships between zygote survival and X-ray dose were similar except for rad52 × rad52. In this cross a considerably higher frequency of dominant lethal damage was observed. This observation indicates that the rad52 mutant lacks a repair system for X-ray damage and is consistent with the proposal that unrepaired chromosome damage is the event which leads to dominant lethality and reproductive cell death.  相似文献   

3.
The human Z-type α1-antitrypsin variant has a strong tendency to accumulate folding intermediates due to extremely slow protein folding within the endoplasmic reticulum (ER) of hepatocytes. Human α1-antitrypsin has 17 peptidyl-prolyl bonds per molecule; thus, the effect of peptidyl-prolyl isomerases on Z-type α1-antitrypsin protein folding was analyzed in this study. The protein level of Cpr2p, a yeast ER peptidyl-prolyl isomerase, increased more than two-fold in Z-type α1-antitrypsin-expressing yeast cells compared to that in wild-type α1-antitrypsin-expressing cells. When CPR2 was deleted from the yeast genome, the cytotoxicity of Z-type α1-antitrypsin increased significantly. The interaction between Z-type α1-antitrypsin and Cpr2p was confirmed by co-immunoprecipitation. In vitro folding assays showed that Cpr2p facilitated Z-type α1-antitrypsin folding into the native state. Furthermore, Cpr2p overexpression significantly increased the extracellular secretion of Z-type α1-antitrypsin. Our results indicate that ER peptidyl-prolyl isomerases may rescue Z-type α1-antitrypsin molecules from retarded folding and eventually relieve clinical symptoms caused by this pathological α1-antitrypsin.  相似文献   

4.
Novick and Szilard demonstrated that increasing the concentrations of adenine enhance the mutation rate of E. coli. We have found that the spontaneous mutation rate of the yeast Saccharomyces cerevisiae remains constant over a 200-fold range of adenine concentration.The system that we commonly use for measuring spontaneous mutation rate is reversion of the super-suppressible mutant lys1-1. In this system, growth of the yeast is limited by limiting the amount of lysine in the medium. A reversion to lysine independence will continue to grow. One of the other super-suppressible mutants in the test system is ade2-1, a mutant that causes accumulation of red pigment. By adjusting the concentration of adenine slightly above that of lysine, reversions of super-suppressors produce white colonies and reversions of the lys1-1 locus itself produce red colonies.  相似文献   

5.
In the presence of glucose in complex media, the following changes in the characters of the membranes of Bacillus subtilis and Bacillus cereus were observed. (1) The activity of succinate dehydrogenase and the amount of cytochromes of the membranes were greatly reduced. (2) The ratio of lipid to protein in the membranes was decreased and a membrane subfraction, which had a density of around 1.2 (B. subtilis) and 1.24 g/cm3 (B. cereus), was newly formed (B. subtilis) or increased (B. cereus). (3) The phospholipid and diglyceride contents in the membranes were reduced.Polyacrylamide gel electrophoresis of proteins of the two types (plus and minus glucose) of the membranes show that the patterns were very different between the two types of membranes, though the lost or newly formed membrane protein components were not observed.The cytochrome content was not increased when the cells were grown in glucose medium supplemented with haemin, therefore, glucose or its metabolite may not be involved in the inhibition of haem biosynthesis.  相似文献   

6.
A partial recovery of ultraviolet (U.V., 254 nm) induced petite mutation (??) is observed in exponential phase yeast. This process requires a period of dark holding (LH) in non-nutrient medium followed by growth in nutrient medium. At intervals during LH prelabelled DNA was examined by equilibrium cesium chloride gradients. The gradual decrease in ?? was accompanied by an ongoing degradation of mitochondrial DNA (mitDNA) during the first 24 hours followed by a stabilization. The dose response for mitDNA degradation was biphasic. No new synthesis of mitDNA occured during LH. MitDNA remaiting after degradation showed a) slight shift to a heavier buoyant density indicating a possible selective degradation of A-T regions b) no difference in size when compared to non-irradiated samples. The first step in the recovery of the ?? mutation is mitDNA degradation followed by other events taking place when growth resumes.  相似文献   

7.
The genetic activity of cyclophosphamide (Cy) was tested in the host-mediated assay (injection of yeasts into the peritoneal cavity of rats) modified by the use of probenecid (Pro) (Benemid®) to block the renal tubular excretion of the genetically active metabolites. The genetic test system used was the induction of mitotic gene conversion in two unlinked loci of a diploid strain of Saccharomyces cerevisiae. By this method the genetic effect of Cy was doubled in comparison with the case of administering Cy alone. Compared with the animals which received only Pro, increases of conversion frequencies of 20 times in the ade2 locus and of 15 times in the trp5 locus were found.  相似文献   

8.
Summary An intermediate in the ethidium bromide (EB) induced petite mutation pathway may be destabilized by daylight light to cause a reversion to the normal grande phenotype. Starved cells preincubated in the dark for up to 6 h with 100 g/ml EB could be reverted to grandes after one hour of light exposure, whereas similarly treated cells maintained in the dark expressed the petite mutation in more than 80 percent of the population. In addition, the production of petite mutants by EB in buffer could be prevented if cell suspensions were exposed to light immediately upon the addition of EB. Photoreversal of the EB-derived petite mutation in growing cells was less efficient presumably because the availability of an energy source caused a continuation of mutation events beyond the light revertible step to a non-reversible fixation of the mutation. Cells treated with EB in growth media at 4° C were more responsive to light protection and reversal of the mutation. This may be due to the cold inhibition of an enzyme which comes into play beyond the light sensitive step in the mutation pathway.  相似文献   

9.
Petite strains in Saccharomyces exhibit enhanced spontaneous mutation rates of nuclear genes regardless of whether they are cytoplasmically or nuclearly inherited, or whether or not the cytoplasmic petite strains have mitochondrial DNA. In petite strains, the mutation rate for the nonsense allele lys1-1 is enhanced by a factor of 3-6 and for the missense allele his1-7 by a factor of 2 as compared with their grande counterparts. The reversion of a third allele, the putative frameshift mutation, hom3-10 , is not enhanced in a petite background. The results indicate that the spontaneous mutation rate of an organism can be altered by indirect intracellular influences.  相似文献   

10.
This paper describes the physical mapping of five antibiotic resistance markers on the mitochondrial genome of Saccharomyces cerevisiae. The physical separations between markers were derived from studies involving a series of stable spontaneous petite strains which were isolated and characterized for the loss or retention of combinations of the five resistance markers. DNA-DNA hybridization using 32P-labelled grande mitochondrial DNA was employed to determine the fraction of grande mitochondrial DNA sequences retained by each of the defined petite strains.One petite clone retaining four of the markers in a segment comprising 36% of the grande genome was then chosen as a reference petite. The sequence homology between the mitochondrial DNA of this petite and that of the other petites was measured by DNA-DNA hybridization. For each petite, the total length of its genome derived by hybridization with grande mitochondrial DNA and the fraction of the grande genome retained in common with the reference petite, together with the genetic markers retained in common, were used to position the DNA segment of each petite relative to the reference petite genome. At the same time the relative physical location of the five markers on a circular genome was established. On the basis of the grande mitochondrial genome being defined as 100 units of DNA, the positions of the markers were determined to bo as follows, measuring from one end of the reference petite genome. chloramphenicol (cap1) ~ 0 units erythromycin (ery1) 0 to 15 units oligomycin (oli1) 18 to 19 units mikamycin (mik1) 22 to 25 units paromomycin (par1) 61 to 73 unitsThe general problems of mapping mitochondrial genetic markers by hybridizations involving petite mitochondrial DNA are discussed. Two very important features of petite genomes which could invalidate the interpretation of DNA-DNA hybridization experiments between petite mitochondrial DNAs are the possible presence in the reference petite of differentially amplified DNA sequences, and/or “new” sequences which are not present in the parent grande genome. A general procedure, which overcomes errors of interpretation arising from these two features is described.  相似文献   

11.
Plasmid YEp(ADE1)1a, containing a 2.7-kb Sau3A fragment of Saccharomyces cerevisiae DNA inserted at the BamHI site of the yeast shuttle vector pBTI-1 (Morris et al., 1981), results in high frequency, unstable transformation of ade1 yeast strains. A second plasmid, YRp(ADE1)2, containing adjacent 0.5-kb and 3.0-kb BamHI fragments in pBR322 gave three types of yeast transformants: (1) transformants carrying extrachromosomal copies of the plasmid which indicate the presence of a functional ars sequence, (2) transformants indistinguishable from ade1 strains by hybridization analyis, and (3) a transformant carrying a multimeric form of YRp(ADE1)2. Cells transformed with either of the plasmids are free of the red pigment characteristic of ade1 mutants and indicate potential for direct colour-based selection of yeast transformants using ADE1 plasmids.  相似文献   

12.
The effect of post-irradiation growth in complete rich medium on the expression of the reversion to arginine-independence induced by gamma and alpha radiation in a heteroallelic diploid yeast strain (Saccharomyces cerevisiae BZ34) has been studied. During the post-irradiation treatment the reversion frequency increased, reached a peak at about 90 min and decreased thereafter reaching a constant value for treatment periods exceeding 6 h. As determined by the increase in number of budding cells, extensive DNA synthesis took place in cells incubated only in the nutrient medium and not in the omission medium. Hence the observed increase in the reversion frequency is explained on the basis that post-irradiation DNA synthesis is necessary for the expression of gene conversion. The decrease in the reversion frequency for continued treatment with yeast extract, peptone, dextrose (YEPD) is related to the fact that only one daughter of the post-irradiation first cell division is a revertant.The broth effect was not lost when the irradiated cells were first incubated for 90 min in arginine-less medium and then transferred to the broth. Similarly, the broth effect persisted even at doses high enough to induce considerable division delay. These results suggest that the radiation-induced pre-conversional lesions are not susceptible to repair by alternative pathways.  相似文献   

13.
A prerequisite for petite induction by ethidium bromide (EB) is an initial covalent attachment of the drug to cytoplasmic DNA. This DNA modification is thought to initiate repair processes. The repair inhibitor, caffeine, provided a protective effect against the ethidium induced petite mutation at caffeine concentrations known to inhibit the repair of UV damage in cytoplasmic DNA (Fig. 1). Mitochondrial DNA isolated from yeast exposed to EB in vivo was not as degraded in the presence of both drugs as with EB alone (Fig. 2).  相似文献   

14.
Loss of mtDNA by the petite-negative yeast Kluyveromyces lactis is lethal (rho(o)-lethality). However, mutations in the alpha, beta and gamma subunits of F(1)-ATPase can suppress lethality by increasing intramitochondrial hydrolysis of ATP. Increased hydrolysis of ATP can also occur on inactivation of Inh1, the natural inhibitor of F(1)-ATPase. However, not all strains of K. lactis show suppression of rho(o)-lethality on inactivation of INH1. Genetic analysis indicates that one or more alleles of modifying factors are required for suppression. Papillae showing enhanced resistance to ethidium bromide (EB) in INH1 disruptants have mutations in the alpha, beta and gamma subunits of F(1)-ATPase. Increased growth of double mutants on EB has been investigated by disruption of INH1 in previously characterized atp suppressor mutants. Inactivation of Inh1, with one exception, results in better growth on EB and increased F(1)-ATPase activity, indicating that suppression of rho(o)-lethality is not due to atp mutations preventing Inh1 from interacting with the F(1)-complex. By contrast, in suppressor mutants altered in Arg435 of the beta subunit, disruption of INH1 did not change the kinetic properties of F(1)-ATPase or alter growth on EB. Consequently, Arg435 appears to be required for interaction of Inh1 with the beta subunit. In a previous study, a mex1-1 allele was found to enhance mgi(atp) expression. In accord with results from double mutants, it has been found that mex1-1 is a frameshift mutation in INH1 causing inactivation of Inh1p.  相似文献   

15.
Mitochondrial DNA from a petite mutant of yeast carrying an oligomycin resistance determinant has been ligated in vitro to 2 μm yeast plasmid DNA. The recombinant DNA so produced has been used to transform an oligomycin sensitive strain of Saccharomyces cerevisiae to oligomycin resistance at a frequency approaching 50 times the spontaneous mutation rate to oligomycin resistance. The majority of transformants showed genetic properties suggesting that recombination between the transforming DNA and the resident mtDNA has occurred. The properties of a subclass of oligomycin resistance transformants suggested that in these cells the transforming DNA has not become stably integrated into the mitochondrial genome of the recipient cell.  相似文献   

16.
The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential.  相似文献   

17.
Summary A mutant of Hansenula wingei, resistant to ethidium bromide (EB) on glucose medium, was analyzed for both meiotic and mitotic segregation. EB resistance on glucose was found to be recessive and due to mutation of two linked nuclear genes, called etb1 and etb2, which are separated by 18 centimorgans. A linked, pleiotropic, glycerol-negative gene (glp) increases the already high frequency of mitotic segregation of these EB resistant loci from the heterozygous diploid about 7-fold. Genetic analysis of six genes has defined only two linkage groups indicating that H. wingei has a small number of chromosomes. This is in agreement with cytological observations by C. Robinow which show that in H. wingei the haploid chromosome number is four.  相似文献   

18.
19.

Background

Cabbage Fusarium wilt is a major disease worldwide that can cause severe yield loss in cabbage (Brassica olerecea). Although markers linked to the resistance gene FOC1 have been identified, no candidate gene for it has been determined so far. In this study, we report the fine mapping and analysis of a candidate gene for FOC1 using a double haploid (DH) population with 160 lines and a F2 population of 4000 individuals derived from the same parental lines.

Results

We confirmed that the resistance to Fusarium wilt was controlled by a single dominant gene based on the resistance segregation ratio of the two populations. Using InDel primers designed from whole-genome re-sequencing data for the two parental lines (the resistant inbred-line 99–77 and the highly susceptible line 99–91) and the DH population, we mapped the resistance gene to a 382-kb genomic region on chromosome C06. Using the F2 population, we narrowed the region to an 84-kb interval that harbored ten genes, including four probable resistance genes (R genes): Bol037156, Bol037157, Bol037158 and Bol037161 according to the gene annotations from BRAD, the genomic database for B. oleracea. After correcting the model of the these genes, we re-predicted two R genes in the target region: re-Bol037156 and re-Bol0371578. The latter was excluded after we compared the two genes’ sequences between ten resistant materials and ten susceptible materials. For re-Bol037156, we found high identity among the sequences of the resistant lines, while among the susceptible lines, there were two types of InDels (a 1-bp insertion and a 10-bp deletion), each of which caused a frameshift and terminating mutation in the cDNA sequences. Further sequence analysis of the two InDel loci from 80 lines (40 resistant and 40 susceptible) also showed that all 40 R lines had no InDel mutation while 39 out of 40 S lines matched the two types of loci. Thus re-Bol037156 was identified as a likely candidate gene for FOC1 in cabbage.

Conclusions

This work may lay the foundation for marker-assisted selection as well as for further function analysis of the FOC1 gene.  相似文献   

20.
The Saccharomyces cerevisiae inositol sphingolipid phospholipase C (Isc1p), a homolog of mammalian neutral sphingomyelinases, hydrolyzes complex sphingolipids to produce ceramide in vitro. Epitope-tagged Isc1p associates with the mitochondria in the post-diauxic phase of yeast growth. In this report, the mitochondrial localization of Isc1p and its role in regulating sphingolipid metabolism were investigated. First, endogenous Isc1p activity was enriched in highly purified mitochondria, and western blots using highly purified mitochondrial membrane fractions demonstrated that epitope-tagged Isc1p localized to the outer mitochondrial membrane as an integral membrane protein. Next, LC/MS was employed to determine the sphingolipid composition of highly purified mitochondria which were found to be significantly enriched in α-hydroxylated phytoceramides (21.7 fold) relative to the whole cell. Mitochondria, on the other hand, were significantly depleted in sphingoid bases. Compared to the parental strain, mitochondria from isc1Δ in the post-diauxic phase showed drastic reduction in the levels of α-hydroxylated phytoceramide (93.1% loss compared to WT mitochondria with only 2.58 fold enrichment in mitochondria compared to whole cell). Functionally, isc1Δ showed a higher rate of respiratory-deficient cells after incubation at high temperature and was more sensitive to hydrogen peroxide and ethidium bromide, indicating that isc1Δ exhibits defects related to mitochondrial function. These results suggest that Isc1p generates ceramide in mitochondria, and the generated ceramide contributes to the normal function of mitochondria. This study provides a first insight into the specific composition of ceramides in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号