首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
Abstract

Using the specific monoiodinated NPY analog [Leu31,Pro34]-NPY we have localized NPY binding sites of the Y1 type in forebrain areas of the rat. The resulting receptor autoradiograms were compared with the regional distribution and cellular localization of the mRNA encoding Y1 receptor as demonstrated by in situ hybridization histochemistry. High densities of Y1 binding sites were present in the cerebral cortex, the claustrum, the thalamus and the medial mammillary nucleus, while moderate densities of Y1 binding sites were observed in the amygdalahippocampal complex. Lower binding densities were observed in septal nuclei, most hypothalamic nuclei and the circumventricular organs. High levels of Y1 mRNA were observed in the granula cell layer of the hippocampal dentate gyrus, several thalamic nuclei and the hypothalamic arcuate nucleus, while moderate levels of Y1 mRNA were seen in the frontoparietal cortex, several thalamic nuclei, the hippocampal pyramidal layers, the subiculum, the olfactory tubercle, the claustrum and a number of hypothalamic nuclei. Using the hypothalamic arcuate nucleus as an example, the distribution of immunoreactive NPY, Y1 mRNA and Y1 binding sites was compared, and possible implications of Y1 mediated actions within this nucleus are discussed. The present study further enlightens the anatomical distribution of NPY binding sites of the Y1 type within the central nervous system of the rat, and extends the understanding of central actions of NPY mediated via this type of receptor.  相似文献   

2.
Abstract

Neuropeptide Y (NPY) recognition by the human neuroblastoma cell lines SiMa, Kelly, SH‐SY5Y, CHP‐234, and MHH‐NB‐11 was analyzed in radioactive binding assays using tritiated NPY. For the cell lines CHP‐234 and MHH‐NB‐11 binding of [3H]propionyl‐NPY was observed with Kd‐values of 0.64 ± 0.07 nM and 0.53 ± 0.12 nM, respectively, determined by saturation analysis with non‐linear regression. The receptor subtype was determined by competition analysis using the subtype selective NPY analogues [Leu31, Pro34]‐NPY (NPY‐Y1, NPY‐Y5), [Ahx5‐24]‐NPY (NPY‐Y2), [Ala31, Aib32]‐NPY (NPY‐Y5), NPY [3‐36] (NPY‐Y2, NPY‐Y5), and NPY [13‐36] (NPY‐Y2). Both cell lines, CHP‐234 and MHH‐NB‐11, the latter one being characterized for NPY receptors for the first time, showed exclusive expression of NPY‐Y2 receptors. In both cell lines binding of NPY induced signal transduction, which was monitored as reduction of forskolin‐induced cAMP production in an ELISA.  相似文献   

3.
Selective NPY analogues are potent tools for tumour targeting. Their Y1‐receptors are significantly over‐expressed in human breast tumours, whereas normal breast tissue only expresses Y2‐receptors. The endogenous peptide consists of 36 amino acids, whereas smaller peptides are preferred because of better labelling efficiencies. As Y1‐receptor agonists enhance the tumour to background ratio compared to Y1‐receptor antagonists, we were interested in the development of Y1‐receptor selective agonists. We designed 19 peptides containing the C‐terminus of NPY (28–36) with several modifications. By using competition receptor binding affinity assays, we identified three NPY analogues with high Y1‐receptor affinity and selectivity. Metabolic stability studies in human blood plasma of the N‐terminally 5(6)‐carboxyfluorescein (CF) labelled peptides resulted in half‐lives of several hours. Furthermore, the degradation pattern revealed proteolytic degradation of the peptides by amino peptidases. The most promising peptide was further investigated in receptor activation and internalization studies. Signal transduction assays revealed clear agonistic properties, which could be confirmed by microscopy studies that showed clear Y1‐receptor internalization. For the first time, here we show the design and characterization of a small Y1‐receptor selective agonist. This agonist might be a useful novel ligand for NPY‐mediated tumour diagnostics and therapeutics. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

5.
Kumar S  Rai U 《Peptides》2011,32(6):1324-1329
Present in vitro study in the wall lizard Hemidactylus flaviviridis, for the first time in ectothermic vertebrates, demonstrated the immunoregulatory role of neuropeptide Y (NPY) and its receptor-coupled downstream signaling cascade. NPY inhibited the percentage phagocytosis and phagocytic index of splenic phagocytes. The inhibitory effect of NPY on phagocytosis was completely antagonized by Y2 and Y5 receptor antagonists. This suggests that NPY mediated its effect on phagocytosis through Y2 and Y5 receptors. Further, NPY receptor-coupled downstream signaling cascade for NPY effect on phagocytosis was explored using the inhibitors of adenylate cyclase (SQ 22536) and protein kinase A (H-89). The SQ 22536/H-89 in a concentration-related manner decreased the inhibitory effect of NPY on phagocytosis. Further, an increase in intracellular cAMP level was observed in response to NPY. Taken together, it can be concluded that NPY via Y2 and Y5 receptor-coupled AC-cAMP-PKA pathway downregulated the phagocytic activity of lizard splenic phagocytes.  相似文献   

6.
7.
Purinergic receptor P2Y12 (P2Y12), a G protein‐coupled purinergic receptor, is widely distributed in nervous system and involved in the progression of neurological diseases such as multiple sclerosis and neuropathic pain. The central noradrenergic system actively participates in a number of neurophysiological processes. Nevertheless, whether there is any direct relevance between P2Y12 and noradrenergic signal transduction remains unknown. In the present study, we tested the hypothesis that lack of P2Y12 impaired noradrenergic signal transduction in mouse brain. Our results showed that P2Y12 knockout (KO) mice exhibited increased anxiety‐like behavior in the open‐field test (OFT) and elevated plus maze test and displayed deficits in memory in the radial‐arm maze test (RAMT) and Morris water maze test (MWMT). They also exhibited reduced locomotion in the OFT and MWMT. Moreover, loss of P2Y12 decreased the level of noradrenaline and the expression of noradrenergic α receptors, subtypes α2 (ARα2b) in mouse cerebellum and hippocampus. Meanwhile, it hampered the protein kinase A (PKA)/cAMP response element‐binding protein (CREB)/brain‐derived neurotrophic factor (BDNF) signaling pathway in these brain regions. Taken together, our results showed for the first time that P2Y12 KO altered the anxiety, memory and locomotion of mice, which was closely associated with abnormal state of noradrenergic system in the brain. The findings implicate that P2Y12 plays an indispensable role in noradrenergic signal transduction; its deficit is insufficient to limit anxiety responses or supports cognitive performance and activity.  相似文献   

8.
To differentiate NPY receptor subtypes, Y1 and Y2, in terms of their impact on feeding behavior, the intact molecule NPY(1–36) and the 3 fragments, NPY(2–36), the Y1 agonist [Leu31,Pro34]NPY, and the Y2 agonist NPY(13–36), were injected (100 pmol/0.3 μl) into the hypothalamic paraventricular nucleus (PVN) of freely feeding rats. A computer-automated data acquisition system was employed in these experiments to permit a detailed analysis of feeding over the 12-h nocturnal cycle, in animals maintained on pure macronutrient diets. The results demonstrate that: 1) NPY(1–36) potentiates feeding behavior, primarily carbohydrate ingestion, by increasing the size and duration of the first meal after injection, rather than by affecting meal number or feeding rate, suggesting that NPY acts through mechanisms of satiety. The potentiation of carbohydrate intake occurs in association with a suppression of protein intake, which is strongest during the second meal after injection and which further increases the proportion of carbohydrate in the diet. No changes in fat ingestion are seen. 2) NPY(2–36), with the N-terminal tyrosine residue deleted, is equally potent to NPY(1–36) in potentiating carbohydrate intake and increasing meal size; however, it is less selective than NPY(1–36), producing an additional, smaller increase in consumption of protein. 3) The stimulatory effect of these peptides on carbohydrate intake and meal size is similarly observed, with somewhat reduced potency, after PVN injection of the selective Y1 agonist [Leu31,Pro34]NPY which, like NPY(1–36), also reduces protein intake. 4) The Y2 receptor agonist, NPY(13–36), causes a decrease in the ingestion of carbohydrate, a smaller decline in protein intake, and a reduction in meal size. It is proposed that hypothalamic Y1 receptors mediate the stimulatory effect of NPY on carbohydrate intake and meal size, while Y2 receptors have the opposite effect of suppressing carbohydrate intake, possibly by altering presynaptic release of monoamines known to influence nutrient ingestion.  相似文献   

9.
Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) belong to the NPY hormone family and activate a class of receptors called the Y‐receptors, and also belong to the large superfamily of the G‐protein coupled receptors. Structure–affinity and structure–activity relationship studies of peptide analogs, combined with studies based on site‐directed mutagenesis and anti‐receptor antibodies, have given insight into the individual characterization of each receptor subtype relative to its interaction with the ligand, as well as to its biological function. A number of selective antagonists at the Y1‐receptor are available whose structures resemble that of the C‐terminus of NPY. Some of these compounds, like BIBP3226, BIBO3304 and GW1229, have recently been used for in vivo investigations of the NPY‐induced increase in food intake. Y2‐receptor selective agonists are the analog cyclo‐(28/32)‐Ac‐[Lys28‐Glu32]‐(25–36)‐pNPY and the TASP molecule containing two units of the NPY segment 21–36. Now the first antagonist with nanomolar affinity for the Y2‐receptor is also known, BIIE0246. So far, the native peptide PP has been shown to be the most potent ligand at the Y4‐receptor. However, by the design of PP/NPY chimera, some analogs have been found that bind not only to the Y4‐, but also to the Y5‐receptor with subnanomolar affinities, and are as potent as NPY at the Y1‐receptor. For the characterization of the Y5‐receptor in vitro and in vivo, a new class of highly selective agonists is now available. This consists of analogs of NPY and of PP/NPY chimera which all contain the motif Ala31‐Aib32. This motif has been shown to induce a 310‐helical turn in the region 28–31 of NPY and is suggested to be the key motif for high Y5‐receptor selectivity. The results of feeding experiments in rats treated with the first highly specific Y5‐receptor agonists support the hypothesis that this receptor plays a role in the NPY‐induced stimulation of food intake. In conclusion, the selective compounds for the different Y‐receptor subtypes known so far are promising tools for a better understanding of the physiological properties of the hormones of the NPY family and related receptors. Copyright © 2000 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
G protein‐coupled receptors (GPCRs) are a class of membrane proteins that represent a major target for pharmacological developments. However, there is still little knowledge about GPCR structure and dynamics since high‐level expression and characterization of active GPCRs in vitro is extremely complicated. Here, we describe the recombinant expression and functional folding of the human Y2 receptor from inclusion bodies of E. coli cultures. Milligram protein quantities were produced using high density fermentation and isolated in a single step purification with a yield of over 20 mg/L culture. Extensive studies were carried out on in vitro refolding and stabilization of the isolated receptor in detergent solution. The specific binding of the ligand, the 36 residue neuropeptide Y (NPY), to the recombinant Y2 receptors in micellar form was shown by several radioligand affinity assays. In competition experiments, an IC50 value in low nanomolar range could be determined. Further, a KD value of 1.9 nM was determined from a saturation assay, where NPY was titrated to the recombinant Y2 receptors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
It has been claimed that glutamate excitotoxicity might have a role in the pathogenesis of several retinal degenerative diseases, including glaucoma and diabetic retinopathy. Neuropeptide Y (NPY) has neuroprotective properties against excitotoxicity in the hippocampus, through the activation of Y1, Y2 and/or Y5 receptors. The principal objective of this study is to investigate the potential protective role of NPY against glutamate-induced toxicity in rat retinal cells (in vitro and in an animal model), unraveling the NPY receptors and intracellular mechanisms involved. Rat retinal neural cell cultures were prepared from newborn Wistar rats (P3-P5) and exposed to glutamate (500 μM) for 24 h. Necrotic cell death was evaluated by propidium iodide (PI) assay and apoptotic cell death using TUNEL and caspase-3 assays. The cell types present in culture were identified by immunocytochemistry. The involvement of NPY receptors was assessed using selective agonists and antagonists. Pre-treatment of cells with NPY (100 nM) inhibited both necrotic cell death (PI-positive cells) and apoptotic cell death (TUNEL-positive cells and caspase 3-positive cells) triggered by glutamate, with the neurons being the cells most strongly affected. The activation of NPY Y2, Y4 and Y5 receptors inhibited necrotic cell death, while apoptotic cell death was only prevented by the activation of NPY Y5 receptor. Moreover, NPY neuroprotective effect was mediated by the activation of PKA and p38K. In the animal model, NPY (2.35 nmol) was intravitreally injected 2 h before glutamate (500 nmol) injection into the vitreous. The protective role of NPY was assessed 24 h after glutamate (or saline) injection by TUNEL assay and Brn3a (marker of ganglion cells) immunohistochemistry. NPY inhibited the increase in the number of TUNEL-positive cells and the decrease in the number of Brn3a-positive cells induced by glutamate. In conclusion, NPY and NPY receptors can be considered potential targets to treat retinal degenerative diseases, such as glaucoma and diabetic retinopathy.  相似文献   

12.
Harro J 《Amino acids》2006,31(3):215-230
Summary. Short CCK peptides elicit panic attacks in humans and anxiogenic-like effects in some animal models, but CCK receptor antagonists have not been found clinically effective. Yet CCK overactivity appears to be involved in submissive behaviour, and CCKB receptor expression and binding are increased in suicide victims and animal models of anxiety. Preliminary data suggest that involvement of CCK and its receptor subtypes in anxiety can be better described when focusing on distinct endophenotypes, and considering environmental contingencies and confounds originating from interactions with dopamin-, opioid- and glutamatergic neurotransmission. In contrast, NPY is an anti-anxiety peptide with robust effects in various animal models when administrated into several brain regions. Studies with non-peptide antagonists selective for receptor subtypes have revealed the role of endogenous NPY in active coping. At least Y1, Y2 and Y5 receptors in various brain regions are involved, with the strongest evidence for contribution of Y1.  相似文献   

13.
Few studies have suggested that neuropeptide Y (NPY) could play an important role in skin functions. However, the expression of NPY, the related peptides, peptide YY (PYY) and pancreatic polypeptide (PP) and their receptors have not been investigated in human skin. Using specific antisera directed against NPY, PYY, PP and the Y1, Y2, Y4 and Y5 receptor subtypes, we investigated here the expression of these markers. NPY-like immunoreactivity (ir) in the epidermal skin could not be detected. For the first time we report the presence of positive PP-like ir immunofluorescent signals in epidermal cells, i.e. keratinocytes of skin from three areas (abdomen, breast and face) obtained as surgical left-overs. The immunofluorescent signal of PP-like ir varies from very low to high level in all three areas. In contrast, PYY-like ir is only expressed in some cells and with varied level of intensity. Furthermore and for the first time we observed specific Y1 and Y4 receptor-like ir in all epidermal layers, while the Y2 and Y5 subtypes were absent. Interestingly, as seen in human epidermis, in Episkin, a reconstituted human epidermal layer, we detected the presence of PP-like as well as Y1-like and Y4-like ir. These data have shown the presence and distribution of PYY, PP and Y1 and Y4 receptors in the human skin and Episkin, suggesting possible novel roles of NPY related peptides and their receptors in skin homeostasis.  相似文献   

14.
Kainate-induced epilepsy has been shown to be associated with increased levels of neuropeptide Y (NPY) in the rat hippocampus. However, there is no information on how increased levels of this peptide might modulate excitation in kainate-induced epilepsy. In this work, we investigated the modulation of glutamate release by NPY receptors in hippocampal synaptosomes isolated from epileptic rats. In the acute phase of epilepsy, a transient decrease in the efficiency of NPY and selective NPY receptor agonists in inhibiting glutamate release was observed. Moreover, in the chronic epileptic hippocampus, a decrease in the efficiency of NPY and the Y(2) receptor agonist, NPY13-36, was also found. Simultaneously, we observed that the epileptic hippocampus expresses higher levels of NPY, which may account for an increased basal inhibition of glutamate release. Consistently, the blockade of Y(2) receptors increased KCl-evoked glutamate release, and there was an increase in Y(2) receptor mRNA levels 30 days after kainic acid injection, suggesting a basal effect of NPY through Y(2) receptors. Taken together, these results indicate that an increased function of the NPY modulatory system in the epileptic hippocampus may contribute to basal inhibition of glutamate release and control hyperexcitability.  相似文献   

15.
The NPY Y1-receptor selective antagonist BIBP3226 exerts a dual control on the cytosolic free calcium concentration ([Ca2+]i) in NPY Y1 receptor- transfected Chinese Hamster Ovary Cells (CHO-Y1 cells). It is a potent inhibitor of the NPY-evoked increase in [Ca2+]i. This can be ascribed to its antagonistic properties for the NPY Y1 receptor since its less active stereoisomer, BIBP3435, is much less potent. However, when its concentration exceeds 1 μM, BIBP3226 produces a large increase in [Ca2+]i on its own. This effect is mimicked by BIBP3435 and it also occurs in wild type CHO-K1 cells. These latter cells do not contain high affinity binding sites for [3H]NPY and [3H]BIBP3226 and, hence, no endogenous NPY Y1 receptors. It is concluded that, at moderately high concentrations, the NPY Y1 receptor antagonist BIBP3226 and its entantiomer BIBP3435 are able to increase the [Ca2+]i in CHO cells either by stimulating another receptor or by directly affecting cellular mechanisms that are involved in calcium homeostasis.  相似文献   

16.
Aging causes loss of brain synapses and memory, and microglial phagocytosis of synapses may contribute to this loss. Stressed neurons can release the nucleotide UTP, which is rapidly converted into UDP, that in turn activates the P2Y6 receptor (P2Y6R) on the surface of microglia, inducing microglial phagocytosis of neurons. However, whether the activation of P2Y6R affects microglial phagocytosis of synapses is unknown. We show here that inactivation of P2Y6R decreases microglial phagocytosis of isolated synapses (synaptosomes) and synaptic loss in neuronal–glial co-cultures. In vivo, wild-type mice aged from 4 to 17 months exhibited reduced synaptic density in cortical and hippocampal regions, which correlated with increased internalization of synaptic material within microglia. However, this aging-induced synaptic loss and internalization were absent in P2Y6R knockout mice, and these mice also lacked any aging-induced memory loss. Thus, P2Y6R appears to mediate aging-induced loss of synapses and memory by increasing microglial phagocytosis of synapses. Consequently, blocking P2Y6R has the potential to prevent age-associated memory impairment.  相似文献   

17.
Abstract

Porcine neuropeptide Y (NPY), a 36 amino acid hormone of the pancreatic polypeptide family, and subtype selective analogues have been synthesized by solid phase peptide synthesis. The peptides were labelled with Cy3TM, a commercially available fluorescent marker based on a cyanine dye, by solid phase strategy. During the cleavage α partial fragmentation of the fluorescent marker occurred. This has been investigated by means of HPLC and electrospray mass spectrometry. The labelled analogues of NPY showed high affinity to the NPY receptor subtypes Y1 and Y2. Thus, Cy3-NPY. Y1-selective Cy3-[Pro34] NPY and Y2 selective Cy3-[Ahx5–24] NPY were used to label SK-N-MC- and SMS-KAN-cells, which are stably expressing the Y1-(SK-N-MC) and the Y2-receptor subtype (SMS-KAN). The binding of the labelled analogues to the receptors was reversible and specific. The photoactivatable analogue, [(Tmd)Phe27] NPY, which showed high affinity to both receptor subtypes was labelled with Cy3 in solution. Whereas the fluorescent labelling of the cells with analogues without photoactivatable amino acid was reversible, successful photocrosslinking could be investigated by the irreversible staining of the cells using Cy3-[(Tmd)Phe27] NPY. These subtype selective analogues are exciting tools to trace receptors in tissues and to identify the pharmacologically characterized subtypes without radioactivity.  相似文献   

18.
Neuropeptide Y (NPY) containing 6 amino acid residues belongs to peptides widely spread in the central and peripheral nervous system. NPY and its receptors play an extremely diverse role in the nervous system, including regulation of satiety, of emotional state, of vascular tone, and of gastrointestinal secretion. In mammals, NPY has been revealed in the majority of sympathetic ganglion neurons, in a high number of neurons of parasympathetic cranial ganglia as well as of intramural ganglia of the metasympathetic nervous system. At present, six types of receptors to NPY (Y1–Y6) have been identified. All receptors to NPY belong to the family of G-bound proteins. Actions of NPY on peripheral organs-targets are predominantly realized through postsynaptic receptors Y1, Y3–Y5, and presynaptic receptors of the Y2 type. NPY is present in large electrondense vesicles and is released at high-frequency stimulation. NPY affects not only vascular tone, frequency and strength of heart contractions, motorics and secretion of the gastrointestinal tract, but also has trophic effect and produces proliferation of cells of organs-targets, specifically of vessels, myocardium, and adipose tissue. In early postnatal ontogenesis the percent of the NPY-containing neurons in ganglia of the autonomic nervous system increases. In senescent organisms, this parameter decreases. This seems to be connected with the trophic NPY effect on cell-targets as well as with regulation of their functional state.  相似文献   

19.
A three-dimensional model of the neuropeptide Y (NPY) - rat Y1 (rY1) receptor complex and of the NPY 13-36 - rY1 receptor complex was constructed by molecular modeling based on the electron density projection map of rhodopsin and on site-directed mutagenesis studies of neuropeptide receptors. In order to further guide the modeling, the nucleotide sequences encoding Trp287, Cys295 and His297 in the third extracellular loop of the rY1 receptor, were altered by site-directed mutagenesis experiments. Single-point mutated receptors were expressed in COS-7 cells, and tested for their ability to bind radio labelled NPY (3H-NPY). Mutations of Trp287 and His297 completely abolished binding of 3H-NPY. The Cys295Ser mutation only slightly decreased the binding of 3H-NPY, suggesting that the involvement of Cys295 in a disulphide bond is not essential for maintaining the correct three-dimensional structure of the binding site for NPY. Molecular dynamics simulations of NPY-rY1 receptor interactions suggested that Asp199, Asp103 and Asp286 in the receptor interact, respectively, with Lys4, Arg33 and Arg35 of NPY. The simulations also suggested that His297 acts as a hydrogen acceptor from Arg35 in NPY, and that Tyr1 of NPY interacts with a binding pocket on the receptor formed by Asn115, Asp286, Trp287 and His297. Tyr36 in NPY interacted both with Thr41 and Tyr99 via hydrogen bonds, and also with Asn296, His297 and Phe301. The present study suggests that amino acid residues at the extracellular end of the transmembrane helices and in the extracellular loops are strongly involved in binding to NPY and NPY13-36.Electronic Supplementary Material available.  相似文献   

20.
Neuropeptide Y (NPY) Y1 receptors are overexpressed in human breast carcinomas. They also have important functional roles in breast tumour growth and metastasis. This study investigates the synthesis of 15 truncated NPY analogues as models for Y1 receptor specific radiopharmaceuticals, using competition radioreceptor binding assays from brain tissue homogenates from Y2Y4-double knockout mice. These peptides are based on the previously reported BVD15 scaffold. Different measures to improve Y1 affinity and plasma metabolic stability were investigated. Extending from the previously reported [Lys(DOTA)4]BVD15 analogue, it was found that lysine4 is capable of tolerating various modifications, including prosthetic groups and other bifunctional chelators, but also that [Lys4]BVD15 has improved Y1 affinity, relative to BVD15 itself. Substitution of lysine4 for side chain shortened analogues retains Y1 receptor affinity of the analogues. Furthermore, modifications at the N-terminal isoleucine resulted in dramatic reduction of Y1 affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号