首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the transition process of the helix‐sense inversion of poly(β‐phenethyl‐L‐aspartate) was investigated by Raman scattering and 2‐dimensional correlation spectroscopy. Temperature‐dependent Raman spectra were obtained during the helix‐sense inversion. The results of 2‐dimensional correlation analysis in the spectral regions of 1600‐1800 and 3200‐3400 cm?1 showed that the intensity changes of the side‐chain ester C═O stretching bands occurred prior to those of amide A and amide I bands in the unwinding process of αR‐helix on heating. The sequential order of the intensity changes for amide A, amide I, and the side‐chain ester C═O stretching bands during the inversion process was determined. It was found that the conformation change of the side chain occurred prior to that of the main chain for the αR‐helix on heating. Thus, we concluded that the transformation of the backbone chain from right‐handed to left‐handed is triggered by the conformational change of the side chains.  相似文献   

2.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive and selective spectrofluorimetric method has been developed for the rapid determination of aluminium. This method is based on the complex formation between aluminium and 2‐hydroxy‐1‐naphthylidene‐(8‐aminoquinoline) (HNAQ). The optimum conditions for the complex formation were a metal‐to‐ligand (M : L) stoichiometric ratio of 1:1, a pH of 5.5 and a 0.20 m acetate buffer. The fluorescence of the complex was monitored at an emission wavelength of 502 nm with excitation at 438 nm. Under these conditions, linear calibration curves were obtained in the ranges 0.05–1 and 1–5 ppm. The detection limit was 3.4 ppb for the former and 13.5 ppb for the latter. The maximum relative standard deviation of the method for an aluminium standard of 200 ppb was 1.5% (n = 5). This method was successfully applied for the determination of aluminium in drinking water, pharmaceutical antacid tablets and suspension samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The interaction of antigen (Ag) and antibody (Ab) with poly diallyldimethylammonium chloride (PDDA) in aqueous solutions has been studied by optical absorption and resonance light‐scattering (RLS) spectroscopies. The formation of the three‐component‐complex is due to aggregates of Ab or Ag with PDDA by electrostatic interaction and aggregates of Ab with Ag by immunoreaction. The influences of some experimental factors, including incubation time, pH value, concentration of PDDA and concentration of Ab, on the aggregation process have also been studied. A linear relationship between the concentration of Ag and the RLS intensity was found. Under the optimal conditions, for a given concentration of Ab (4.6 µg/mL), the enhancement of RLS intensity is in proportion to the concentration of Ag in the range 0.03–0.83 µg/mL. The RLS could, in combination with immunoassay, be a rapid and sensitive detection method for Ag. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The interaction between 2‐phenylpyrazolo[1,5‐c]quinazoline (PQ) and DNA under physiological conditions was investigated using multi‐spectroscopic techniques, atomic force microscopy and gel electrophoresis. The thermodynamic parameters were estimated and were discussed in detail. The results of fluorescence‐quenching experiments indicated that the main interactive force between PQ and DNA was a hydrophobic interaction and that it was a static quenching process. Potassium iodide and single‐strand (ss)DNA quenching studies, together with circular dichroism spectra implied groove binding of PQ with DNA. Atomic force microscopy and gel electrophoresis experiments suggested that there were no major conformational changes in DNA upon interaction with PQ. In addition, UV/vis absorption titration of DNA bases confirmed that PQ bound with DNA mainly through a minor groove interaction and preferentially interacted with adenine and thymine. We anticipate that this work will provide useful information for the application of quinazoline derivatives in the fields of medicinal and pharmaceutical chemistry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

7.
Poly(ADP‐ribose) polymerase‐1 (PARP‐1) is a mammalian enzyme that attaches long branching chains of ADP‐ribose to specific nuclear proteins, including itself. Because its activity in vitro is dependent upon interaction with broken DNA, it has been postulated that PARP‐1 plays an important role in DNA strand‐break repair in vivo. The exact mechanism of binding to DNA and the structural determinants of binding remain to be defined, but regions of transition from single‐stranded to double‐strandedness may be important recognition sites. Here we employ surface plasmon resonance (SPR) to investigate this hypothesis. Oligodeoxynucleotide (ODN) substrates that mimic DNA with different degrees of single‐strandedness were used for measurements of both PARP‐1/DNA binding kinetics and PARP‐1's enzyme activities. We found that binding correlated with activity, but was unrelated to single‐strandedness of the ODN. Instead, PARP‐1 binding and activity were highest on ODNs that modeled a DNA double‐strand break (DSB). These results provide support for PARP‐1 recognizing and binding DSBs in a manner that is independent of single‐stranded features, and demonstrate the usefulness of SPR for simultaneously investigating both PARP‐1 binding and PARP‐1 auto‐poly(ADP‐ribosyl)ation activities within the same in vitro system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A label‐free immunoassay system using eggshell membrane as a matrix was developed. A common spectrofluorometer was used to collect light‐scattering signals. The rabbit anti‐human IgG (Ab) was first immobilized on the eggshell membrane with glutaraldehyde. Then, based on the immunoreactions and electrostatic interaction, the target human IgG antigen (Ag) and poly(diallyldimethylammonium chloride) (PDDA) were captured on the eggshell membrane. It was found that the light‐scattering signal resulting from the PDDA immunotargeted on modified eggshell membrane was related to the concentration of target antigen. Under the optimal conditions, the light scattering intensity is directly proportional to the concentration of Ag in the range of 5.00–500 ng/mL (r = 0.995) with the limit of detection of 2.31 ng/mL [signal:noise ratio (S:N) = 3]. The proposed method was successfully applied to the determination of IgG in human serum, and the results were in agreement with those obtained by a general immunonephelometric method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Engin ahin 《Chirality》2019,31(10):892-897
Optically active aromatic alcohols are valuable chiral building blocks of many natural products and chiral drugs. Lactobacillus paracasei BD87E6, which was isolated from a cereal‐based fermented beverage, was shown as a biocatalyst for the bioreduction of 1‐(benzofuran‐2‐yl) ethanone to (S)‐1‐(benzofuran‐2‐yl) ethanol with highly stereoselectivity. The bioreduction conditions were optimized using L. paracasei BD87E6 to obtain high enantiomeric excess (ee) and conversion. After optimization of the bioreduction conditions, it was shown that the bioreduction of 1‐(benzofuran‐2‐yl)ethanone was performed in mild reaction conditions. The asymmetric bioreduction of the 1‐(benzofuran‐2‐yl)ethanone had reached 92% yield with ee of higher than 99.9% at 6.73 g of substrate. Our study gave the first example for enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol by a biological green method. This process is also scalable and has potential in application. In this study, a basic and novel whole‐cell mediated biocatalytic method was performed for the enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol in the aqueous medium, which empowered the synthesis of a precious chiral intermediary process to be converted into a sophisticated molecule for drug production.  相似文献   

10.
11.
In an acid medium solution, proteins such as bovine serum albumin, human serum albumin, ovalbumin, hemoglobin, lysozyme, γ‐globulin, α‐chymotrypsin and papain could react with [PdI4]2? by virtue of electrostatic attraction and hydrophobic force to form ion‐association complexes. As a result, the resonance Rayleigh scattering (RRS) and resonance nonlinear scattering such as second‐order scattering (SOS) and frequency doubling scattering (FDS) intensities were enhanced greatly and new scattering spectra appeared. The maximum scattering peaks of RRS, SOS and FDS were at 367, 720 and 370 nm, respectively. The enhanced RRS, SOS and FDS intensities were directly proportional to the concentrations of proteins. The detection limits for the different proteins were 2.4–11.8 ng/mL for RRS method, 9.5–47.9 ng/mL for SOS method and 4.6–18.5 ng/mL for FDS method. In this work, the influences of the interaction of [PdI4]2? with proteins on spectral characteristics of RRS, SOS and FDS were investigated and the optimum conditions were tested. Meanwhile, the effects of coexisting substances were tested and the results showed that the method exhibited a good selectivity. Based on the above research, a highly sensitive, simple and rapid method for the determination of trace amounts of proteins by resonance light scattering technique has been developed. It can be applied to the determination of proteins in tablet, human serum and urine samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
To develop an optimal attractant for Monochamus saltuarius (Gebler) (Coleoptera: Cerambycidae), the synergistic effects of a few potential attractants (ethanol and α‐pinene as host‐plant volatiles, and ipsenol and ipsdienol as bark beetle pheromones) were tested in a pine forest combined with 2‐(1‐undecyloxy)‐1‐ethanol (monochamol), the aggregation pheromone of Monochamus species, for two consecutive years, 2014 and 2015. Total number of catches was 65 and 33 in 2014 and 2015, respectively. Ethanol or ethanol + monochamol (a base blend) were not attractive to M. saltuarius with no difference from the control. Addition of α‐pinene and ipsdienol to the base blend did not significantly increase catches. However, ipsenol was significantly synergistic to the base blend in attracting M. saltuarius in 2014, and the blend (ipsenol + base blend) attracted meaningfully higher numbers of M. saltuarius in 2015. Our study illustrates the potential for monochamol and ipsenol baits for monitoring and trapping of M. saltuarius in the field.  相似文献   

13.
A series of novel phenylurea containing 2‐benzoylindan‐1‐one derivatives 3a  –  3j were synthesized from the reaction of phenylurea‐substituted acetophenones 1a  –  1j with phthalaldehyde 2 under mild reaction conditions in good yields. All synthesized compounds were characterized by spectroscopic methods. The obtained compounds ( 3a  –  3j ) were evaluated for anticancer activity against HeLa and C6 cell lines. Antiproliferative activity was determined by the BrdU proliferation ELISA assay, 3f and 3g were found to be most active compounds. The compounds were also screened for antimicrobial activity and all compounds showed remarkable activity against used microorganisms.  相似文献   

14.
The interactions of cobalt(II)–4‐[(5‐chloro‐2‐pyridyl)azo]‐1,3‐diaminobenzene (5‐Cl‐PADAB) complex with different kinds of homopolymer oligonucleotides in basic medium were investigated based on the measurements of resonance light scattering, UV–vis, circular dichroism spectra and dark field light‐scattering imaging. Experiments showed that only thymidine homopolymer (poly T) oligonucleotides with the length in the range of poly T6 to poly T18 could interact with the Co(II)–5‐Cl‐PADAB complex in alkaline conditions and cause evident color and spectral change. Thus, the binary complex of Co(II)–5‐Cl‐PADAB could be employed as a visual probe for selectively recognizing the poly T oligonucleotides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Di‐(2‐ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in industrial production, but may have a potential health risk. In this study, the binding characteristics of DEHP with human serum albumin (HSA) in aqueous solution at pH 7.4 were determined using UV/vis absorption, fluorescence, Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD), along with a molecular simulation technique. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by DEHP was static. The calculated thermodynamic parameters indicated that hydrophobic forces played a predominant role in formation of the DEHP–HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments and denaturation studies showed that the binding of DEHP to HSA primarily took place in subdomain IIA of HSA, and molecular docking results further corroborated the binding sites. The synchronous fluorescence, UV/vis absorption, FTIR and CD spectra revealed that the addition of DEHP induced changes in the secondary structure of HSA. Protein surface hydrophobicity (PSH) tests indicated that DEHP binding to HSA caused an increase in the PSH. Moreover, the effects of some metal ions on the binding constant of DEHP − HSA interaction were also investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A new dinuclear copper(II) complex bridged by N‐[3‐(dimethylamino)propyl]‐N′‐ (2‐carbo‐xylatophenyl)oxamide (H3dmapob), and endcapped with 2,2′‐diamino‐4,4′‐bithiazole (dabt), namely [Cu2(dmapob)(dabt)(CH3OH)(pic)]·(DMF)0.75·(CH3OH)0.25 has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single‐crystal X‐ray diffraction. In the crystal structure, both copper(II) ions have square–pyramidal coordination geometries. The Cu···Cu separation through the oxamido bridge is 5.176(9) Å. A two‐dimensional supramolecular framework is formed through hydrogen bonds and π–π stacking interactions. The reactivities toward herring sperm DNA and bovine serum albumin (BSA) show that the complex can interact with the DNA via intercalation mode and bind to the BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines. The influence of different bridging ligands in dinuclear complexes on the DNA‐ and BSA‐binding properties as well as anticancer activities is preliminarily discussed.  相似文献   

17.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

18.
Microbial activities and the versatility gained through adaptation to xenobiotic compounds are the main biological forces to counteract environmental pollution. The current results present a new adaptive mechanism that is mediated through posttranslational modifications. Strains of Delftia acidovorans incapable of growing autochthonously on 2,4‐dichlorophenoxyacetate (2,4‐D) were cultivated in a chemostat on 2,4‐D in the presence of (R)‐2‐(2,4‐dichlorophenoxy)propionate. Long‐term cultivation led to enhanced 2,4‐D degradation, as demonstrated by improved values of the Michaelis–Menten constant Km for 2,4‐D and the catalytic efficiency kcat/Km of the initial degradative key enzyme (R)‐2‐(2,4‐dichlorophenoxy)propionate/α‐ketoglutarate‐dependent dioxygenases (RdpA). Analyses of the rdpA gene did not reveal any mutations, indicating a nongenetic mechanism of adaptation. 2‐DE of enzyme preparations, however, showed a series of RdpA forms varying in their pI. During adaptation increased numbers of RdpA variants were observed. Subsequent immunoassays of the RdpA variants showed a specific reaction with 2,4‐dinitrophenylhydrazine (DNPH), characteristic of carbonylation modifications. Together these results indicate that posttranslational carbonylation modified the substrate specificity of RdpA. A model was implemented explaining the segregation of clones with improved degradative activity within the chemostat. The process described is capable of quickly responding to environmental conditions by reversibly adapting the degradative potential to various phenoxyalkanoate herbicides.  相似文献   

19.
Using 2,4,6‐tris‐(2‐pyridyl)‐s‐triazine (TPTZ) as a neutral ligand, and p‐hydroxybenzoic acid, terephthalic acid and nitrate as anion ligands, five novel europium complexes have been synthesized. These complexes were characterized using elemental analysis, rare earth coordination titrations, UV/vis absorption spectroscopy and infrared spectroscopy. Luminescence spectra, luminescence lifetime and quantum efficiency were investigated and the mechanism discussed in depth. The results show that the complexes have excellent emission intensities, long emission lifetimes and high quantum efficiencies. The superior luminescent properties of the complexes may be because the triplet energy level of the ligands matches well with the lowest excitation state energy level of Eu3+. Moreover, changing the ratio of the ligands and metal ions leads to different luminescent properties. Among the complexes, Eu2(TPTZ)2(C8H4O4)(NO3)4(C2H5OH)·H2O shows the strongest luminescence intensity, longest emission lifetime and highest quantum efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A new trinickel(II) complex bridged by N‐[3‐(dimethylamino)propyl]‐ N ′‐(2‐hydroxylphenyl)oxamido (H3pdmapo), namely [Ni3(pdmapo)2(H2O)2]?4CH3OH, was synthesized and characterized by X‐ray single‐crystal diffraction and other methods. In the molecule, two symmetric cis‐ pdmapo3? mononickel(II) complexes as a “complex ligand” using the carbonyl oxygen atoms coordinate to the center nickel(II) ion situated on an inversion point. The Ni···Ni distance through the oxamido bridge is 5.2624(4) Å. The center nickel(II) ion and the lateral ones have octahedral and square‐planar coordination geometries, respectively. In the crystal, a three‐dimensional supramolecular network dominated by hydrogen bonds is observed. The reactivity toward DNA/protein bovine serum albumin (BSA) revealed that the complex could interact with herring sperm DNA (HS‐DNA) through the intercalation mode and quench the intrinsic fluorescence of BSA via a static mechanism. The in vitro anticancer activities suggested that the complex is active against the selected tumor cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号