首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Abstract

Two recent studies have independently recovered Pisanosaurus mertii – long thought to represent the oldest known member of Ornithischia – within Silesauridae. These finds are expanded upon here, as are the implications of this hypothesis. Based upon these finds, it now appears that Ornithischia was absent in the Triassic Period entirely, which constitutes a major incongruence between the fossil record and current phylogenetic hypotheses, particularly the traditional model of dinosaur interrelationships in which Ornithischia and Saurischia are sister-taxa. It has been suggested previously that Ornithischia was simply a rare component of Late Triassic faunas, or that perhaps the clade’s ecology or geographic distribution were not conducive to producing a fossil record. Here I propose that phylogeny could hold the solution to this problem. I examine how an alternative position for Ornithischia – nested either within Theropoda or Sauropodomorpha – could be the reason behind their later appearance and relative rarity in the Early Jurassic. An Early Jurassic origin of Ornithischia would force us to consider that the anatomical similarities between ornithischians and Early Jurassic taxa might not be convergences, and to broaden the current datasets of early dinosaurs to test these ideas.  相似文献   

2.
Multiple associations of fossil snails with dinosaur coprolites demonstrate that snails and dinosaurs not only shared ancient habitats but were trophically linked via dinosaur dung. Over 130 fossil snails representing at least seven different taxa have been found on or within herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana. The terrestrial snail Megomphix is the most common taxon, but three other terrestrial taxa (Prograngerella, Hendersonia and Polygyrella) and three aquatic snails (Lioplacodes, ?Viviparus and a physid) also occur in coprolites. At least 46% of the shells in the faeces are whole or nearly so, indicating that most (if not all) of the snails were not ingested by dinosaurs, but were post‐depositional visitors to the dung pats. The sizeable, moist and microbially enriched dinosaur faeces would have provided both food and roosting sites for the ancient snails, and the large number of snail–coprolite associations reflect recurring, opportunistic exploitation of dung. The terrestrial taxa in the coprolites suggest that this Late Cretaceous locality included sufficiently moist detrital or vegetative cover for snails when dinosaur dung was not present. The aquatic snails probably entered the faeces during flood events. Dinosaur dung would have provided an abundant but patchy influx of resources that was probably seasonally available in the ancient environment.  相似文献   

3.
The significance of co‐evolution over ecological timescales is well established, yet it remains unclear to what extent co‐evolutionary processes contribute to driving large‐scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long‐term co‐evolutionary hypotheses relate to proposed interactions between herbivorous non‐avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co‐occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright‐coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur–cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified – GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co‐evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co‐evolutionary interactions between cycads and herbivorous dinosaurs – diffuse co‐evolutionary scenarios that are proposed to operate over geological timescales are plausible, but such hypotheses need to be firmly grounded on direct evidence of interaction and may be difficult to support given the patchiness of the fossil record.  相似文献   

4.
Fritsch KS  Hsu JC 《Biometrics》1999,55(4):1300-1305
Summary. Did the biodiversity of dinosaurs decline, or did it remain more or less constant before their mass extinction 65 million years ago? Sheehan et al. (1991, Science, 835–839) reported that the biodiversity of families of dinosaur species remained more or less constant preceding their extinction, suggesting extinction due to a cataclysmic event such as an asteroid strike. But that claim was based on the incorrect interpretation that a large p value associated with a test of null hypothesis of equality supports that null hypothesis. To assess whether there is a basis for such a claim, we formulate the problem as one of practical equivalence, in analogy to bioequivalence. We then develop reliable practical equivalence confidence intervals for differences of entropies by applying the bootstrap-t technique to a nearly pivotal quantity. Confidence intervals for changes in the biodiversity of dinosaurs are then computed, allowing the reader to assess whether there is evidence of near constancy of dinosaur biodiversity before extinction.  相似文献   

5.
It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondylus carinatus , all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently documented or lacking from the fossil record. This contributes to the understanding of their evolution.  相似文献   

6.
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister‐group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid‐Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node‐based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as “all descendants of the most recent common ancestor of birds and Triceratops”. Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical “competitive” models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian‐Norian, Triassic‐Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as “prosauropods” and coelophysoids.  相似文献   

7.
Nied?wiedzki, G., Gorzelak, P. & Sulej, T. 2010: Bite traces on dicynodont bones and the early evolution of large terrestrial predators. Lethaia, Vol. 44, pp. 87–92. Dicynodont (Synapsida: Anomodontia) bones from the Late Triassic (late Norian/early Rhaetian) of Poland yield characteristic tooth marks that can be attributed to three ichnotaxa (Linichnus serratus, Knethichnus parallelum and Nihilichnus nihilicus). The general shape and dimension of these traces perfectly match the dental morphology of a co‐occurring carnivorous dinosaur. It is therefore concluded that early carnivorous dinosaurs were feeding on dicynodonts. This discovery constitutes one of the oldest evidence of dinosaur predator–prey interaction. It is suggested that an evolutionary increase in the size of dicynodonts across the Late Triassic may have been driven by selection pressure to reach a size refuge from early dinosaur predators. □Bite traces, dicynodonts, dinosaurs, predation, Triassic.  相似文献   

8.

Background

Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs.

Methodology/Principal Findings

We report that Archaeopteryx long bones are composed of nearly avascular parallel-fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all endothermic vertebrates.

Conclusions/Significance

The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms occurred later in the group''s history.  相似文献   

9.
The rise of dinosaurs was a major event in vertebrate history, but the timing of the origin and early diversification of the group remain poorly constrained. Here, we describe Nyasasaurus parringtoni gen. et sp. nov., which is identified as either the earliest known member of, or the sister–taxon to, Dinosauria. Nyasasaurus possesses a unique combination of dinosaur character states and an elevated growth rate similar to that of definitive early dinosaurs. It demonstrates that the initial dinosaur radiation occurred over a longer timescale than previously thought (possibly 15 Myr earlier), and that dinosaurs and their immediate relatives are better understood as part of a larger Middle Triassic archosauriform radiation. The African provenance of Nyasasaurus supports a southern Pangaean origin for Dinosauria.  相似文献   

10.
Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs’ successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals larger than 21.5 kg, and it seems a similar minimum prey-size threshold could have affected dinosaurs as well.  相似文献   

11.
The extremes of dinosaur body size have long fascinated scientists. The smallest (<1 m length) known dinosaurs are carnivorous saurischian theropods, and similarly diminutive herbivorous or omnivorous ornithischians (the other major group of dinosaurs) are unknown. We report a new ornithischian dinosaur, Fruitadens haagarorum, from the Late Jurassic of western North America that rivals the smallest theropods in size. The largest specimens of Fruitadens represent young adults in their fifth year of development and are estimated at just 65–75 cm in total body length and 0.5–0.75 kg body mass. They are thus the smallest known ornithischians. Fruitadens is a late-surviving member of the basal dinosaur clade Heterodontosauridae, and is the first member of this clade to be described from North America. The craniodental anatomy and diminutive body size of Fruitadens suggest that this taxon was an ecological generalist with an omnivorous diet, thus providing new insights into morphological and palaeoecological diversity within Dinosauria. Late-surviving (Late Jurassic and Early Cretaceous) heterodontosaurids are smaller and less ecologically specialized than Early (Late Triassic and Early Jurassic) heterodontosaurids, and this ecological generalization may account in part for the remarkable 100-million-year-long longevity of the clade.  相似文献   

12.
In Gondwana, Early Jurassic dinosaur track sites are especially concentrated in Lesotho. Despite intensive investigations during the third quarter of the twentieth century, a limited number of vertebrate track sites of this country have been studied with rigorous ichnological and sedimentological methodology. Here, we present a previously mentioned, but undescribed track site in the upper Elliot Formation (Hettangian?) of Lesotho, located near Roma (at Lephoto dam). Two tridactyl ichnite morphologies, made by bipedal vertebrate trackmakers are recognised. The first can be identified as Grallator-like, an ichnotaxon common in the Lower Jurassic of both Laurasia and Gondwana that can be attributed to small and medium-size theropod dinosaurs. In contrast, the second ichnite type is reminiscent of Trisauropodiscus, which is a rare ichnotaxon that resembles tracks of small birds and is known with certainty in Lesotho from only a few places. We suggest that at our upper Elliot Formation study site, Trisauropodiscus was potentially made by a heterodontosaurid ornithischian dinosaur. Our work provides further evidence that the ichnological record of the Stormberg Group of southern Africa is in a unique position to shed light not only on Early Jurassic biostratigraphy and palaeoenvironments but also on the biodiversity and palaeobiology of early dinosaurs.  相似文献   

13.
The largest specimen of the four‐winged dromaeosaurid dinosaur Microraptor gui includes preserved gut contents. Previous reports of gut contents and considerations of functional morphology have indicated that Microraptor hunted in an arboreal environment. The new specimen demonstrates that this was not strictly the case, and offers unique insights into the ecology of nonavian dinosaurs early in the evolution of flight. The preserved gut contents are composed of teleost fish remains. Several morphological adaptations of Microraptor are identified as consistent with a partially piscivorous diet, including dentition with reduced serrations and forward projecting teeth on the anterior of the dentary. The feeding habits of Microraptor can now be understood better than that of any other carnivorous nonavian dinosaur, and Microraptor appears to have been an opportunistic and generalist feeder, able to exploit the most common prey in both the arboreal and aquatic microhabitats of the Early Cretaceous Jehol ecosystem.  相似文献   

14.
Mechanics of posture and gait of some large dinosaurs   总被引:2,自引:0,他引:2  
Dimensions of dinosaur bones and of models of dinosaurs have been used as the basis for calculations designed to throw light on the posture and gaits of dinosaurs.
Estimates of the masses of some dinosaurs, obtained from the volumes of models, are compared with previous estimates. The positions of dinosaurs' centres of mass, derived from models, show that some large quadrupedal dinosaurs supported most of their weight on their hind legs and were probably capable of rearing up on their hind legs.
Distributions of bending moments along the backs of large dinosaurs are derived from measurements on models. The tensions required in epaxial muscles to enable Diplodocus to stand are calculated. It is likely that the long neck of this dinosaur was supported by some structure running through the notches in the neural spines of its cervical and dorsal vertebrae. The nature of this hypothetical structure is discussed.
An attempt is made to reconstruct the walking gait of sauropod dinosaurs, from the pattern of footprints in fossil tracks.
The dimensions of dinosaur leg bones are compared to predictions for mammals of equal body mass, obtained by extrapolation of allometric equations. Their dimensions are also used to calculate a quantity which is used as an indicator of strength in bending. Comparisons with values for modern animals lead to speculations about the athletic performance of dinosaurs.
Estimates of pressures exerted on the ground by the feet of dinosaurs are used in a discussion of the ability of dinosaurs to walk over soft ground.  相似文献   

15.
Abstract: The Cretaceous dinosaur fauna of Indo‐Pakistan has remained poorly understood because of a lack of associated and articulated remains, proliferation of named species, and an incomplete understanding of the dinosaur clades present (e.g. abelisaurid theropods; titanosaur sauropods). Continued work on existing collections, and new discoveries of dinosaur material from India, Pakistan and elsewhere in Gondwana, has begun to resolve the composition and affinities of Indo‐Pakistani dinosaurs. Here, we provide archival evidence that documents associations between postcranial remains of a sauropod collected from Chhota Simla, India by C. A. Matley in the 1930s and later described as ‘Titanosaurus sp.’ This partial skeleton, which represents only the fifth such documented association from Indo‐Pakistan, is referable to Jainosaurus cf. septentrionalis and provides a fuller understanding of its anatomy and phylogenetic affinities.  相似文献   

16.
Hone, D.W.E. & Rauhut, O.W.M. 2009: Feeding behaviour and bone utilization by theropod dinosaurs. Lethaia, Vol. 43, pp. 232–244. Examples of bone exploitation by carnivorous theropod dinosaurs are relatively rare, representing an apparent waste of both mineral and energetic resources. A review of the known incidences and possible ecological implications of theropod bone use concludes that there is currently no definitive evidence supporting the regular deliberate ingestion of bone by these predators. However, further investigation is required as the small bones of juvenile dinosaurs missing from the fossil record may be absent as a result of theropods preferentially hunting and consuming juveniles. We discuss implications for both hunting and feeding in theropods based on the existing data. We conclude that, like modern predators, theropods preferentially hunted and ate juvenile animals leading to the absence of small, and especially young, dinosaurs in the fossil record. The traditional view of large theropods hunting the adults of large or giant dinosaur species is therefore considered unlikely and such events rare. □Behaviour, carnivory, palaeoecology, predation, resource utilization.  相似文献   

17.
Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian‐ 209–201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916–924, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
James M. Clark  Xing Xu 《Evolution》2009,2(2):236-247
Dinosaurs have captured the popular imagination more than any other extinct group of organisms and are therefore a powerful tool in teaching evolutionary biology. Most students are familiar with a wide variety of dinosaurs and the relative suddenness of their extinction, but few are aware of the tremendous longevity of their time on Earth and the richness of their fossil record. We first review some of the best-known groups of dinosaurs and discuss how their less-specialized relatives elucidate the path through which each evolved. We then discuss our recent discovery of Yinlong downsi, a distant relative of Triceratops, and other fossils from Jurassic deposits in China to exemplify how the continuing discovery of fossils is filling out the dinosaur family tree.  相似文献   

19.
The ecosystem impact of megaherbivorous dinosaurs of the Morrison Formation would have depended on their abundance (number of animals per unit of habitat area) on the landscape. We constrain Morrison megaherbivore abundance by modelling dinosaur abundance in terms of carrying capacity (K), average body mass (ABM) and animal's energy needs. Two kinds of model are presented: ‘demand-side’ models that estimate K in terms of the aggregate energy demand of the dinosaur community, and ‘supply-side’ models that estimate K in terms of retrodicted primary productivity. Baseline values of K, ABM and energy needs for the models are further derived from comparisons with modern large herbivores, and from the composition of the megaherbivore fauna from a particular stratigraphic interval of the Morrison, but in all models a broad range of fractions and multiples of these baseline parameters are considered. ‘Best-guess’ estimates of Morrison megaherbivore abundance suggest an upper limit of a few hundred animals across all taxa and size classes per square kilometre, and up to a few tens of individuals of large subadults and adults.  相似文献   

20.
Although rare, dinosaurs are well preserved in calcareous nodules of the Santana Formation (Early Cretaceous, ?Albian) of the Araripe Basin, in northeastern Brazil. So far, including only a spinosauroid and three coelurosaurs, the dinosaur fauna appears depauperate. High theropod diversity in assemblages where other dinosaurs are rare or absent is not unique to the Santana Formation. It is seen also in several other assemblages, including Solnhofen and the Maevarano Formation of Madagascar. We consider several factors, including the occurrence of intraguild predation, the possibility that small theropods could subsist in marginal environments, and reliance on coastal resources, that may have been responsible for this apparent ecological imbalance. A new coelurosaur from the Santana Formation, here formally named Mirischia asymmetrica, is shown to be distinct from Santanaraptor placidus [Kellner, A.W.A. () “Short note on a new dinosaur (Theropoda, Coelurosauria) from the Santana Formation (Romualdo Member, Albian) northeastern Brazil”, Boletim do Museu Nacional, Nova Serie, Rio de Janeiro, Brasil 49, 1–8]. Other theropods from the Santana Formation are briefly reviewed. Mirischia is a compsognathid, more similar to the European Compsognathus than to the Asian Sinosauropteryx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号