共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Takatoshi Munaoka Xuzhou Yan Jeffrey Lopez John W. F. To Jihye Park Jeffrey B.‐H. Tok Yi Cui Zhenan Bao 《Liver Transplantation》2018,8(14)
A self‐healing polymer (SHP) with abundant hydrogen bonds, appropriate viscoelasticity, and stretchability is a promising binder to improve cycle performance of Si microparticle anodes in lithium (Li) ion batteries. Besides high capacity and long cycle life, efficient rate performance is strongly desirable for practical Si anode implementation. Here, polyethylene glycol (PEG) groups are incorporated into the SHP, facilitating Li ionic conduction within the binder. The concept of the SHP‐PEG binder involves improving the interface between Si microparticles and electrolytes after cycling based on the combination of self‐healing ability and fast Li ionic conduction. Through the systematic study of mixing PEG Mw and ratio, the polymeric binder combining SHP and PEG with Mw 750 in an optimal ratio of 60:40 (mol%) achieves a high discharging capacity of ≈2600 mA h g?1, reasonable rate performance especially when >1C and maintains 80% of their initial capacity even after ≈150 cycles at 0.5C. The described concept for the polymeric binder, embedding both self‐healing ability and high Li ionic conductivity, should be equally useful for next generation batteries utilizing high capacity materials which suffer from huge volume change during cycling. 相似文献
3.
4.
Xiaobin Hui Ruizheng Zhao Peng Zhang Caixia Li Chengxiang Wang Longwei Yin 《Liver Transplantation》2019,9(33)
Silicon is attracting enormous attention due to its theoretical capacity of 4200 mAh g?1 as an anode for Li‐ion batteries (LIBs). It is of fundamental importance and challenge to develop low‐temperature reaction route to controllably synthesize Si/Ti3C2 MXene LIBs anodes. Herein, a novel and efficient strategy integrating in situ orthosilicate hydrolysis and a low‐temperature reduction process to synthesize Si/Ti3C2 MXene composites is reported. The hydrolysis of tetraethyl orthosilicate leads to homogenous nucleation and growth of SiO2 nanoparticles on the surface of Ti3C2 MXene. Subsequently, SiO2 nanoparticles are reduced to Si via a low‐temperature (200 °C) reduction route. Importantly, Ti3C2 MXene not only provides fast transfer channels for Li+ and electrons, but also relieves volume expansion of Si during cycling. Moreover, the characteristics of excellent pseudocapacitive performance and high conductivity of Ti3C2 MXene can synergistically contribute to the enhancement of energy storage performance. As expected, Ti3C2/Si anode exhibits an outstanding specific capacity of 1849 mAh g?1 at 100 mA g?1, even retaining 956 mAh g?1 at 1 A g?1. The low‐temperature synthetic route to Si/Ti3C2 MXene electrodes and involved battery‐capacitive dual‐model energy storage mechanism has potential in the design of novel high‐performance electrodes for energy storage devices. 相似文献
5.
6.
7.
Carbon‐Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy‐Density Li‐Ion Battery 下载免费PDF全文
Daniel Adjei Agyeman Kyeongse Song Gi‐Hyeok Lee Mihui Park Yong‐Mook Kang 《Liver Transplantation》2016,6(20)
Improving the lithium (Li) storage properties of silicon (Si)‐based anode materials is of great significance for the realization of advanced Li‐ion batteries. The major challenge is to make Si‐based anode materials maintain electronic conduction and structural integrity during cycling. Novel carbon‐coated Si nanoparticles (NPs)/reduced graphene oxides (rGO) composites are synthesized through simple solution mixing and layer‐by‐layer assembly between polydopamine‐coated Si NPs and graphene oxide nanosheets by filtration, followed by a thermal reduction. The anodic properties of this composite demonstrate the potency of the novel hybrid design based on two dimensional materials for extremely reversible energy conversion and storage. A high capacity and an extremely stable cycle life are simultaneously realized with carbon‐coated Si/rGO composite, which has a sandwich structure. The unprecedented electrochemical performance of this composite can be ascribed to the synergistic effect of polydopamine and rGO. The polydopamine layer forms strong hydrogen bonding with rGO through chemical cross‐linking, thus firmly anchoring Si NPs on rGO sheets to prevent the aggregation of Si NPs and their electronic contact loss. Finally, its structural feature with stacked rGO clipping carbon‐coated Si NPs inside it enables to keep the overall electrode highly conductive and mechanically robust, thus maintaining its initial capacity even with extended cycling. 相似文献
8.
Ultrafine copper nanopalm tree‐like frameworks conformally decorated with iron oxide (Cu NPF@Fe2O3) are prepared by a facile electrodeposition method utilizing bromine ions as unique anisotropic growth catalysts. The formation mechanism and control over Cu growth are comprehensively investigated under various conditions to provide a guideline for fabricating a Cu nanoarchitecture via electrochemical methods. The optimized Cu NPFs exhibit ultrathin (<90 nm) and elongated (2–50 µm) branches with well‐interconnected and entangled features, which result in highly desirable attributes such as a large specific surface area (≈6.97 m2 g?1), free transfer pathway for Li+, and high electrical conductivity. The structural advantages of Cu NPF@Fe2O3 enhance the electrochemical kinetics, providing large reactivity, fast Li+/electron transfer, and structural stability during cycling, that lead to superior electrochemical Li storage performance. The resulting Cu NPF@Fe2O3 demonstrates a high specific capacity (919.5 mAh g–1 at 0.1 C), long‐term stability (801.1 mAh g–1 at 2 C, ≈120% retention after 500 cycles), and outstanding rate capability (630 mAh g–1 at 10 C). 相似文献
9.
Potassium‐ion batteries (KIBs) are important alternatives to lithium‐ and sodium‐ion batteries. Herein, microsized a Bi electrode delivers exceptional potassium storage capacity, stability, and rate capability by the formation of an elastic and adhesive oligomer‐containing solid electrolyte interface with the assistance of diglyme electrolytes. The kinetics‐controlled K–Bi phase transitions are unraveled combining electrochemical profiles, in situ X‐ray diffraction and density functional theory calculations. Reversible, stepwise Bi–KBi2–K3Bi2–K3Bi transitions govern the electrochemical processes after the initial continuous surface potassiation. The Bi electrode outperforms the other anode counterparts considering both capacity and potential. This work provides critical insights into the rational design of high‐performance anode materials for KIBs. 相似文献
10.
11.
While the practical application of electrode materials depends intensively on the Li+ ion storage mechanisms correlating ultimately with the coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling, only intercalation‐type electrode materials have proven viable for commercialization up to now. This paper reviews the promising anode materials of metal vanadates (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni, Li) that have high capacity, low cost, and abundant resource, and also discusses the related Li+ ion storage mechanism. It is concluded that most of these (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni) exhibit irreversible redox reactions upon lithiation/delithiation accompanied by large volume expansion, which is not favorable for industrial applications. In particular, Li3VO4 with specific intercalation Li+ ion storage mechanism and compatible merits of safety and energy density exhibits great potential for practical application. This review systematically summarizes the latest progress in Li3VO4 research, including the representative fabrication approaches for advanced morphology and state‐of‐the‐art technologies to boost performance and the morphology variation associated with Li+ ion storage mechanisms. Furthermore, an outlook on where breakthroughs for Li3VO4 may be most likely achieved will be provided. 相似文献
12.
Silicon Nanowires and Lithium Cobalt Oxide Nanowires in Graphene Nanoribbon Papers for Full Lithium Ion Battery 下载免费PDF全文
Rodrigo V. Salvatierra Abdul‐Rahman O. Raji Sung‐Ki Lee Yongsung Ji Lei Li James M. Tour 《Liver Transplantation》2016,6(24)
Described here is the production and characterization of a scalable method to produce 3D structured lithium ion battery anodes using free‐standing papers of porous silicon nanowires (Si‐NW) and graphene nanoribbons (GNRs). Using simple filtration methods, GNRs and Si‐NWs can be entangled into a mat thereby forming Si‐NW GNR papers. This produces anodes with high gravimetric capacity (up to 2500 mA h g?1) and high areal and volumetric capacities (up to 11 mA h cm?2 and 3960 mA h cm?3). The compact structure of the anode is possible since the GNR volume occupies a high proportion of empty space within the composite paper. These Si‐NW/GNR papers have been cycled for over 300 cycles, exhibiting a stable life cycle. Combined with LiCoO2 nanowires, a full battery is produced with high energy density (386 Wh kg?1), meeting requirements for high performance devices. 相似文献
13.
14.
Victor Vanpeene Julie Villanova Andrew King Bernard Lestriez Eric Maire Lionel Rou 《Liver Transplantation》2019,9(18)
The alloying reaction of silicon with lithium in negative electrodes for lithium‐ion batteries causes brutal morphological changes that severely degrade their cyclability. In this study, the dynamics of their expansion and contraction, of their cracking in the bulk and of their debonding at the interface with the current collector are visualized by in situ synchrotron X‐ray computed tomography and quantified from appropriate 3D imaging analyses. Two electrodes made with same silicon material having reasonable particle size distribution from an applied point of view are compared: one fabricated according to a standard process and the other one prepared with a maturation step, which consists in storing the electrode in a humid atmosphere for a few days before drying and cell assembly. All morphological degradations are significantly restrained for the matured electrode, confirming the great efficiency of this maturation step to produce a more ductile and resilient electrode architecture, which is at the origin of the major improvement in their cyclability. 相似文献
15.
Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thin‐Film Anode and its Effects on Cyclic Stability for Li‐Ion Batteries 下载免费PDF全文
Minsub Oh Sekwon Na Chang‐Su Woo Jun‐Ho Jeong Sung‐Soo Kim Alicja Bachmatiuk Mark Hermann Rümmeli Seungmin Hyun Hoo‐Jeong Lee 《Liver Transplantation》2015,5(22)
The results of employing (Ti, Fe)‐alloyed Si thin‐film anode for Li‐ion batteries are reported. The material demonstrates an impressive cyclic stability with stable operation for more than 500 cycles at a capacity higher than 1400 mAh g?1. Materials characterization using scanning electron microscopy and transmission electron microscopy illuminates an intriguing materials process behind the performance: ripple‐like pattern formation via electrochemically driven segregation of the inactive elements (Ti and Fe). The ripple structure plays a buffer role by suppressing loss of the active material upon further cycling, allowing the anode to gradually transform into an array of microbumps. The morphological evolution helps the anode endure long cycles (even up to 1000 cycles) without catastrophic failure as the bumps shrank slowly and steadily, consistent with the electrochemical data. 相似文献
16.
17.
Ran Yi Fang Dai Mikhail L. Gordin Hiesang Sohn Donghai Wang 《Liver Transplantation》2013,3(11):1507-1515
Silicon has been intensively pursued as the most promising anode material for Li‐ion batteries due to its high theoretical capacity of 3579 mAh/g. Micro‐sized Si–C composites composed of nanoscale primary building blocks are attractive Si‐based anodes for practical application because they not only achieve excellent cycling stability, but also offer both gravimetric and volumetric capacity. However, the effects of key parameters in designing such materials on their electrochemical performance are unknown and how to optimize them thus remains to be explored. Herein, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro‐sized Si–C composites is investigated. It is found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the first cycle coulombic efficiency (CE) and the rate capability. Corresponding reasons underlying electrochemical performance are revealed by various characterizations. Combining both optimized Si building block size and carbon coating temperature, the resultant composite can sustain 600 cycles at 1.2 A/g with a fixed lithiation capacity of 1200 mAh/g, the best cycling performance with such a high capacity for micro‐sized Si‐based anodes. 相似文献
18.
Jiyoung Ma Jaekyung Sung Yoonkwang Lee Yeonguk Son Sujong Chae Namhyung Kim Seong‐Hyeon Choi Jaephil Cho 《Liver Transplantation》2020,10(6)
To be a thinner and more lightweight lithium‐ion battery with high energy density, the next‐generation anode with high gravimetric and volumetric capacity is a prerequisite. In this regard, utilizing high silicon (3579 mAh g?1) content in the electrode for the anode has been highlighted as a practically relevant approach. However, there still remains a crucial issue related to intrinsic volume expansion (>300%) of silicon upon lithiation, which can directly affect severe electrode swelling as well as accelerate its capacity fading by triggering structural degradation and electrical contact loss between particles. Herein, macropore‐exploited design, which can accommodate the volume change of high silicon content within the extended pore of graphite upon repeated cycling, is introduced. Such unique macropore‐exploited design leads to much less electrode swelling, by preserving its morphological integrity and contact between particles, than that of the comparative group with different sized pore and silicon distribution. As a result, this anode (914 mAh g?1) demonstrates notable gravimetric (220 Wh kg?1 at 6000 W kg?1) and volumetric energy density (623 Wh L?1 upon full lithiation after 100 cycles), exceeding that of a nano‐silicon blended graphite anode (127 Wh kg?1 and 229 Wh L?1) in the full‐cell system. 相似文献
19.
Mihit H. Parekh Anton D. Sediako Ali Naseri Murray J. Thomson Vilas G. Pol 《Liver Transplantation》2020,10(2)
A composite anode material synthesized using silicon nanoparticles, micrometer sized graphite particles, and starch‐derived amorphous carbon (GCSi) offers scalability and enhanced electrochemical performance when compared to existing graphite anodes. Mechanistic elucidation of the formation steps of tailored GCSi composite are achieved with environmental transmission electron microscopy (ETEM) and thermal safety aspects of the composite anode are studied for the first time using specially designed multimode calorimetry for coin cell studies. Electrochemical analysis of the composite anode demonstrates a high initial discharge capacity (1126 mAh g?1) and yields a high coulombic efficiency of 83% in the first charge cycle. Applying a current density of 500 mA g?1, the anode composite retains 448 mAh g?1 specific capacity after 100 cycles. Cycling stability is a result of improved interfacial binding made possible by the interconnected architecture of wheat derived amorphous carbon, enhancing the electrochemical kinetics and decreasing the inherent issues associated with volume expansion and pulverization of pristine Si electrodes. Comparing the energy released during thermal runaway, per specific capacity for the full‐cell, the GCSi composite releases less heat than the conventional graphitic anode, suggesting a synergistic effect of each ingredient of the GCSi composite, providing a safer and higher performing anode. 相似文献
20.
Dan Sun Xiaobo Zhu Bin Luo Yu Zhang Yougen Tang Haiyan Wang Lianzhou Wang 《Liver Transplantation》2018,8(26)
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated. 相似文献