首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the probability of a mutation occurring and the ability of the mutant to persist will influence the distribution of mutants that arise in a population. We studied the interaction of these factors for the in vitro selection of rifampicin (RIF)-resistant mutants of Mycobacterium tuberculosis. We characterised two series of spontaneous RIF-resistant in vitro mutants from isoniazid (INH)-sensitive and -resistant laboratory strains and clinical isolates, representing various M. tuberculosis genotypes. The first series were selected from multiple parallel 1 ml cultures and the second from single 10 ml cultures. RIF-resistant mutants were screened by Multiplex Ligation-dependent Probe Amplification (MLPA) or by sequencing the rpoB gene. For all strains the mutation rate for RIF resistance was determined with a fluctuation assay. The most striking observation was a shift towards rpoB-S531L (TCG→TTG) mutations in a panel of laboratory-generated INH-resistant mutants selected from the 10-ml cultures (p<0.001). All tested strains showed similar mutation rates (1.33×10−8 to 2.49×10−7) except one of the laboratory-generated INH mutants with a mutation rate measured at 5.71×10−7, more than 10 times higher than that of the INH susceptible parental strain (5.46–7.44×10−8). No significant, systematic difference in the spectrum of rpoB-mutations between strains of different genotypes was observed. The dramatic shift towards rpoB-S531L in our INH-resistant laboratory mutants suggests that the relative fitness of resistant mutants can dramatically impact the distribution of (subsequent) mutations that accumulate in a M. tuberculosis population, at least in vitro. We conclude that, against specific genetic backgrounds, certain resistance mutations are particularly likely to spread. Molecular screening for these (combinations of) mutations in clinical isolates could rapidly identify these particular pathogenic strains. We therefore recommend that isolates are screened for the distribution of resistance mutations, especially in regions that are highly endemic for (multi)drug resistant tuberculosis.  相似文献   

2.
Streptomyces coelicolor produces four known antibiotics. To define genetic elements that regulate antibiotic synthesis, we screened for mutations that visibly blocked synthesis of the two pigmented antibiotics and found that the mutant strains which we recovered were of two classes--double mutants and mutants in which all four antibiotics were blocked. The mutations in these multiply blocked strains define a new locus of S. coelicolor which we have named absA. The genetic location of absA, at 10 o'clock, is distinct from the locations of the antibiotic gene clusters and from other known mutations that affect antibiotic synthesis. The phenotype of the absA mutants suggests that all S. coelicolor antibiotic synthesis genes are subject to a common global regulation that is at least in part distinct from sporulation and that absA is a genetic component of the regulatory mechanism.  相似文献   

3.
One hundred and thirty-nine independent, nitrosoguanidine-induced mutants blocked early in development were isolated in two haploid strains of D. discoideum. Forty of these developmental mutants were completely aggregation-deficient on bacterial lawns (Class I mutants) and these mutants were selected for parasexual genetic analysis. By fusing the Class I mutants with developmentally-competent strains the developmental mutations in 39 of these mutants were shown to be recessive; the remaining mutation appeared to be partially dominant. Complementation analysis of the developmental mutations in the Class I strains identified 5 complementation groups. Statistical analysis of the complementation data suggests that there are approximately 40 genes in this organism which will completely block aggregation when mutated and perhaps as many as 150 genes involved in some aspect of the aggregation process. Linkage analysis of 18 Class I developmental mutations revealed that 10 of these mutations map in linkage group II at a minimum of 5 loci.  相似文献   

4.
Chlamydomonas reinhardtii mutants resistant to the herbicide sulfometuron methyl (SM) were isolated and characterized. Growth of C. reinhardtii is sensitive to inhibition by SM at a concentration of 1 micromolar. Four mutants resistant to 10- to 100-fold higher concentrations were isolated. All possess a form of acetolactate synthase (ALS) whose specific activity in cell extracts is 100- to 1000-fold more resistant to SM than is the specific activity of wild-type enzyme. Only one mutant had abnormally low ALS specific activity in the absence of SM. All mutations were inherited as single lesions in the nuclear genome and were expressed in heterozygous diploids. The mutations in two strains mapped to linkage group IX about 30 centimorgans from streptomycin resistance and on the same side of the centromere, and in genetic crosses between mutants no segregation was observed. Accordingly, all mutations are tentatively assigned to gene smr-1. Herbicide resistance appears to be suitable as a selectable marker for molecular transformation in this organism.  相似文献   

5.
The approximate genetic map locations of auxotrophic and conditional lethal mutations of Escherichia coli can be rapidly determined with replica plating techniques. A set of patches of 15 streptomycin-sensitive (StrS) Hfr strains with points of origin distributed around the map is replica plated onto a recombinant-selective plate with a lawn of StrR cells which carry an unmapped mutation. The map interval defined by the Hfr points of origin which are closest to the mutant locus is seen by the presence or absence of heavy patches of recombinants produced by transfer of early wild-type genes from the Hfrs. An alternative method is to replicate patches of different mutant strains (100 per plate) onto Hfr lawns; in this case more than 1,000 different mutants can be mapped in a single experiment in a few days. In this way, many types of mutations with similar phenotypes can be grouped as to approximate location on the genetic map. For ordering mutations within groups, the same replica plating methods can be used to cross F-prime derivatives of mutants with other mutants of the same group. Relative merits of these and other mapping methods of E. coli are discussed.  相似文献   

6.
Hyper-rec mutants of Escherichia coli were originally identified as lac-diploid strains whose colonies exhibited unusually high numbers of Lac+ papillae during growth on indicator plates (Konrad, 1977). For this work, 38 hyper-rec strains with particularly high frequencies of papillation were selected and screened further, in order to identify those unusually proficient in recombination of bacteriophage λ. The screening procedure, plate-stock growth of λ duplication phages, yielded four strains that exhibited both enhanced recombination of λ and normal (or higher) yields of progeny phage. The mutants displayed the same novel phenotype: phage recombination was normal during the first lytic infection, but was stimulated four- to sixfold if the phages had previously been propagated for several cycles in the mutants. Phages thus appeared to accumulate an enhanced potential for recombination during growth in these four strains. The mutations responsible were designated arl. Enhanced recombination of the phages propagated on arl strains occurred in subsequent test infections of both arl and arl+ bacteria, but not in recA cells. Both the high frequency of Lac+ papillae and the effects on λ recombination appeared to result from the same mutations. The former phenotype was used for genetic analysis of two arl mutants; their location is near 2 minutes on the E. coli map. Known alleles of two nearby genes, polB and mutT, do not confer a hyper-rec phenotype (by the lac-diploid assay). High-level RecA-constitutive strains do not exhibit enhanced recombination of duplication phages.  相似文献   

7.
Genomic dissection of antibiotic resistance in bacterial pathogens has largely focused on genetic changes conferring growth above a single critical concentration of drug. However, reduced susceptibility to antibiotics—even below this breakpoint—is associated with poor treatment outcomes in the clinic, including in tuberculosis. Clinical strains of Mycobacterium tuberculosis exhibit extensive quantitative variation in antibiotic susceptibility but the genetic basis behind this spectrum of drug susceptibility remains ill-defined. Through a genome wide association study, we show that non-synonymous mutations in dnaA, which encodes an essential and highly conserved regulator of DNA replication, are associated with drug resistance in clinical M. tuberculosis strains. We demonstrate that these dnaA mutations specifically enhance M. tuberculosis survival during isoniazid treatment via reduced expression of katG, the activator of isoniazid. To identify DnaA interactors relevant to this phenotype, we perform the first genome-wide biochemical mapping of DnaA binding sites in mycobacteria which reveals a DnaA interaction site that is the target of recurrent mutation in clinical strains. Reconstructing clinically prevalent mutations in this DnaA interaction site reproduces the phenotypes of dnaA mutants, suggesting that clinical strains of M. tuberculosis have evolved mutations in a previously uncharacterized DnaA pathway that quantitatively increases resistance to the key first-line antibiotic isoniazid. Discovering genetic mechanisms that reduce drug susceptibility and support the evolution of high-level drug resistance will guide development of biomarkers capable of prospectively identifying patients at risk of treatment failure in the clinic.  相似文献   

8.
Auxotrophic mutants of the yeast Saccharomyces cerevisiae are usually isolated in haploid strains because the isolation of recessive mutations in diploids is thought to be difficult due to the presence of two sets of genes. We show here that auxotrophic mutants of diploid industrial sake yeast strains were routinely obtained by a standard mutant selection procedure following UV mutagenesis. We isolated His, Met, Lys, Trp, Leu, Arg, and Ura auxotrophic mutants of five sake strains, Kyokai no. 7, no. 9, no. 10, no. 701, and no. 901, by screening only 1,700 to 3,400 colonies from each treated strain. Wild-type alleles were cloned and used as markers for transformation. With HIS3 as a selectable marker, the yeast TDH3 overexpression promoter was inserted upstream of ATF1, encoding alcohol acetyltransferase, by one-step gene replacement in a his3 mutant of Kyokai no. 7. The resulting strain contained exclusively yeast DNA, making it acceptable for commercial use, and produced a larger amount of isoamyl acetate, a banana-like flavor. We argue that the generally recognized difficulty of isolating auxotrophic mutants of diploid industrial yeast strains is misleading and that genetic techniques used for haploid laboratory strains are applicable for this purpose.  相似文献   

9.
The sensitivity of larval populations of Drosophila melanogaster to the lethal action of methyl methanesulfonate (MMS) was determined. Wild-type strains were compared with strains carrying X-linked mutations that increase mutagen sensitivity. The determination of dose—response relationships for MMS-induced lethality allowed for a quantitative comparison of the MMS sensitivity of the mutants. The sensitivity difference, measured by the LD-50 values, between the most resistant and the most sensitive stock used in this study was 40-fold. Stocks containing mutations in the meiotic genes mei-41 and mei-9 were by far the most sensitive ones. These mutants are known to be repair-deficient.The meiotic mutants were tested in various stocks with different genetic backgrounds. It turned out that the larval MMS sensitivity strongly depended on the genotype of the parental females used to obtain the larval populations for MMS treatment. These maternal effects were not simulated by an age-dependent variation in MMS sensitivity because no differences in developmental time between the strains with different genetic constitution were found. Furthermore, a maternal effect on the relative frequency of spontaneous lethality of genetically identical mutant progeny derived from different types of female was demonstrated.These maternal effects, both on spontaneous lethality and on larval MMS sensitivity, are of interest because they extend beyond the embryonic stages of development.  相似文献   

10.
14 mutants of T2, which carried mutations in the gene coding for glucosyltransferase, were isolated. Although ambers were not selected for, six mutants appeared to be of the amber type. These mutants, as well as another twelve, 5 missense and 7 amber, were located and a genetic map was constructed. The amber and non-amber mutations were not equally distributed over the gt gene. The part transcribed first carried mainly amber mutations; the tail part contained only non-amber mutations. A possible relation between the non-random location of the two kinds of mutation and functional differences within the enzyme is discussed. No intragenic complementation could be demonstrated. The recombination frequencies of amgt mutants are reduced to about two-thirds if crosses are performed under conditions where the DNA of the mutants remains unglucosylated.  相似文献   

11.
Hamer JE  Valent B  Chumley FG 《Genetics》1989,122(2):351-361
Teflon film surfaces are highly conducive to the formation of infection structures (appressoria) in the plant pathogenic fungus, Magnaporthe grisea. We have utilized Teflon films to screen and select for mutants of M. grisea that are defective in appressorium formation. This approach and several others yielded a group of 14 mutants with a similar phenotype. All the mutant strains make abnormally shaped conidia and appressoria. When two mutant strains are crossed, abnormally shaped asci are formed. Ascus shape is normal when a mutant strain is crossed with a wild-type strain. Despite dramatic alterations in cell shape these strains otherwise grow, form conidia, undergo meiosis, and infect plants normally. This mutant phenotype, which we have termed Smo(-), for abnormal spore morphology, segregates in simple Mendelian fashion in crosses with wild-type strains. Some ascospore lethality is associated with smo mutations. In genetic crosses between mutants, smo mutations fail to recombine and do not demonstrate complementation of the abnormal ascus shape phenotype. We conclude that the smo mutations are alleles of a single genetic locus and are recessive with regard to the the ascus shape defect. Mutations at the SMO locus also permit germinating M. grisea conidia to differentiate appressoria on surfaces that are not normally conducive to infection structure formation. A number of spontaneous smo mutations have been recovered. The frequent occurrence of this mutation suggests that the SMO locus may be highly mutable.  相似文献   

12.
A large proportion of spontaneous mutations inDrosophila melanogaster strains of laboratory origin are associated with insertions of mobile DNA elements. As a first step toward determining whether spontaneous laboratory mutations are predictive for mutational events occurring in the wild, recessivebrown (bw) eye color mutants were isolated. By inbreeding the progeny of wild-caughtDrosophila melanogaster females,bw mutations were isolated from seven separate geographic sites distributed among Japan, California, Siberia and Hungary. Among a total of 14 mutations studied, no case of transposon mutagenesis was found. At least 4 mutations are associated with small deletions in thebw gene. The remainder are inseparable from wild-typebw by Southern analysis and are presumed to be basepair changes or very small indels. Although only two spontaneousbw mutants of laboratory origin have been analyzed molecularly, one is a mobile element insertion.  相似文献   

13.
Mutants of E. coli K12 that overproduce ornithine transcarbamylase can be identified in Car- strains because they permit utilization of citrulline as a carbamyl phosphate source, due to reversal of the normal OTCase reaction; they are called Cut mutants (citrulline utilizers). Hfr strains that carry the F factor adjacent to argF (one of two duplicate genes that code for ornithine transcarbamylase in E. coli K12) yield more Cut mutants than do F+ or F- strains, or Hfr strains in which the F factor is not adjacent to argF. When Hfr strains in which the F factor is integrated adjacent to argF are made recA, they yield few Cut mutants. Many of the Cut mutants recovered from one of the Hfr strains used in the investigation (Hfr P4X) are unstable; the properties of these unstable mutations suggest that they carry aberrations in the region of the argF gene. Thus, the increased yields of Cut mutants probably result from aberrations that occur when the F factor is integrated adjacent to argF. The nature of these aberrations is not yet known. The unstable Cut mutants are to a large extent stabilized by recA; such stabilization is one of the properties of duplications. Other data indicate that the aberrations may be more complex than simple gene duplications; in particular properties of segregants and some recombinants derived from unstable Cut mutants are most easily interpreted by assuming that segregation from, and possibly formation of, the unstable mutants occurs in several stages.  相似文献   

14.
A system for genetic analysis in the cellular slime mold P. violaceum has been developed. Two growth-temperature-sensitive mutants were isolated in a haploid strain and used to select rare diploid heterozygotes arising by spontaneous fusion of the haploid cells. A recessive mutations to cycloheximide resistance in one strain enables selection of segregants, which often appear to be aneuploid.—Aggregation-defective (ag- ) mutants having a wide range of phenotypes were isolated in both temperature-sensitive strains after nitrosoguanidine treatment, and complementation tests were performed between pairs of these mutants. Of 380 diploids isolated, 32 showed defective aggregation and were considered to contain 2 noncomplementing ag- mutations. Among noncomplementing mutants interallelic complementation is common. Noncomplementing mutants fall into 4 complementation groups, and those within each complementation group are phenotypically similar. Statistical analysis of the results suggests that the number of complementation units involved in aggregation is about 50.  相似文献   

15.
Mutants resistant to diphtheria toxin (Dipr) have been selected from a variety of human fibroblast cell strains derived from both normal subjects and individuals with known genetic predisposition to cancer such as xeroderma pigmentosum, Fanconi anemia and Bloom's syndrome. Treatment with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) led to a marked increase in the frequency of Dipr mutants in various cell strains. The increase in the frequency of Dipr mutants occurred in a linear dose-dependent manner in response to MNNG and ethyl methanesulfonate, in one of the cell strains examined. The rate of muation to diphtheria toxin as determined by fluctuation analysis was very similar in various cell strains (1–3 × 10?7 mutations/cell/generation), except for the strain GM1492 (8.8 × 10?7 mutations/cell/generation) which is derived from a Bloom syndrome patient.  相似文献   

16.
17.
In the small nematode, Caenorhabditis elegans, mutants with a disorganized myofilament lattice structure have been identified by polarized light and electron microscopy. Genetic analysis places the mutations in 12 complementation groups which are distributed over the six linkage groups of C. elegans. The phenotypes are described for the mutants from the 9 complementation groups not previously reported on in detail. Most are paralyzed, but some exhibit essentially normal movement; mutants of two loci show changes only in later larval stages and adulthood. Morphological studies show that, in general, all the members of a complementation group show similar changes in muscle structure and that these changes are distinctive for that group. In mutants of several genes, disorganization of the myofilament lattice is general with no one component of the lattice more obviously altered than others. In mutants of other genes specific structures are prominently altered. In one of the instances where thick filaments appear to be abnormal, double mutants combining mutations in this gene (unc-82 IV) with mutations in the gene for a myosin heavy chain (MacLeod et al., 1977a,b) or paramyosin (Waterston et al., 1977) were used to show that the unc-82 gene product probably affects thick filament assembly through its actions on paramyosin. Some possible implications of the morphological features of the mutants as well as the conclusions derived from the genetic studies are discussed.  相似文献   

18.
Martin F  Kim MS  Gomez-Diaz C  Hovemann B  Alcorta E 《Genetica》2006,128(1-3):359-372
Enhancer trap P-element insertion has become a common method for generating new mutations in Drosophila melanogaster. When this method is used to isolate mutants for quantitative traits, an appropriate control must be established to define normal and mutant phenotypes. Considering that enhancer-trap lines are generated by crossing several strains, usually with no homogeneous genetic background, no clear control strain can be selected. Previous reports tried to overcome this problem by homogenizing the genetic background of the original lines. However, this is not the most common scenario, especially when functional phenotypes are studied in previously generated lines. Without such caution, is it possible to identify functional mutants among P-element insertion lines? We tested this for olfactory preference, a quantitative trait. Using as control measurement the average phenotype of 30 simultaneously generated P-element insertion lines with preferential reporter-gene expression in olfactory reception organs, we found that 25 of the lines exhibited mutant phenotypes in response to one or several of 5 tested odorants. Additional tests showed that the efficiency of the method for detecting olfactory mutations exceeded 60% even for such a small number of tested odorants. According to these results this approach greatly facilitates the identification of putative abnormal phenotypes, which must be extensively confirmed afterwards.  相似文献   

19.
Genetics and function of DNA ligase in Escherichia coli   总被引:51,自引:0,他引:51  
The characterization of two classes of DNA ligase mutants in Escherichia coli is described. The first class consists of three mutations coding for a temperature-sensitive ligase and defines the structural gene for DNA ligase (lig). The second class of mutants (lop) overproduces an apparently wild-type enzyme; a genetic diploid analysis implies that these are promoter or operator mutations, lig and lop are cotransduced by phage P1 and map at 46 minutes on the E. coli map. Detailed studies of two lig mutants (lig4 and lig ts7) are reported, lig ts7 is a conditionally lethal mutation, proving the essential nature of the ligase gene product. Neither mutant has a major defect in recombination or ultraviolet-repair, but both show retarded sealing of 10 S pulse-labeled DNA (Okazaki fragments).  相似文献   

20.
Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号