首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sucrose synthetase and sucrose phosphate synthetase could not be detected in 7-day-old excised tomato roots grown in sucrose. These roots, however, possessed a highly active acid invertase and a neutral invertase of low activity. The distribution of the cell wall-located acid invertase along the root axis appeared to be related to growth. This was not the case for the soluble enzyme. The possible functions of these two enzymes are discussed.  相似文献   

2.
The free sugar in the mature pollen grains of Camellia japonica is almost all sucrose and the sucrose content decreases rapidly during pollen growth. The activity of soluble invertase increases during culturing and a high constant activity was found at the later stages of pollen tube growth. By contrast, the level of sucrose synthetase activity remains constant during pollen growth and that of wall-bound invertase activity is very low. Cycloheximide has little effect on the activity of these enzymes. Exogenous sucrose or glucose was simultaneously incorporated into the pollen grains when they absorbed water and swelled. The free sugar levels in growing pollen depend on the nature of the exogenous sugar. The sugar metabolism in the pollen at the stage of germination differs from that during tube growth, the latter being particularly influenced by exogenous sugar.  相似文献   

3.
Starch and sucrose metabolism of one- and two-year-old needles of Norway spruce (Picea abies [L.] Karst., about 30 years old) was investigated from three months before until three months after bud break at a natural site. We distinguish different metabolic states according to the extractable activities of enzymes (α-amylase [EC 3.2.1.1], ADP-glucose pyrophosphorylase [AGP, EC 2.7.7.27], D-enzyme [EC 2.4.1.25], starch phosphorylase [STP. EC 2.4.1.1]), sucrose phosphate synthase [SPS, EC 2.4.1.14], sucrose syntbase [SS, EC 2.4.1.13]. acid invertase [AI, EC 3.2.1.261) and pool sizes of related metabolites (starch, glucose, fructose, sucrose, raffinose, stachyose, fructose 6-phosphate [F6P], glucose 6-phosphate [G6P], fructose 2,6-bisphosphate [F26BP], and inorganic phosphate [P1]). The period ending with bud break was characterized by high rates of net photosynthesis, a pronounced decrease in the amount of soluble sugars, and a steep rise in starch (from the detection limit to approximately 600 nmol glycosyl units [mg dry weight]-1). In parallel, the extractable activity of AGP increased, while D-enzyme was on a relative high level when compared with the period after bud break. With respect to sucrose metabolism, F26BP, an inhibitor of sucrose synthesis, decreased from 1 to 0.4 pmol (mg dry weight)-1. This was complemented by SPS activity, which was due to both increased protein levels shown by immunoblotting and activation under metabolite control (high levels of G6P and a low Pi/G6P ratio). This indicates a high capacity of synthesis of starch and sucrose in the period before bud break. These observations are in accordance with estimates of photosynthetic carbon gain, which indicate that in early spring large amounts of carbon from current photosynthesis are exported out of the needles. In addition, the content of nonstructural carbohydrates (expressed as hexoses) increased in the bark of the stem. This could also be a consequence of an enhanced carbon export from the needles. After the onset of bud break, starch concentration decreased in all tissues under investigation. In contrast, the level of total nonstructural carbohydrates in the outermost sapwood nearly doubled from bud break until the end of sampling. In the needles, net photosynthesis was reduced by about 75% and a decrease in SPS activity and protein level were found together with lower G6P concentration, and an increased Pi/G6P ratio. These results suggest that during that period sucrose synthesis was reduced in the older needles. In addition, under conditions of reduced photosynthesis, carbon demand of current year needles was in part ensured by the mobilization of starch in the older needles. Taken together our data show that before bud break carbon metabolism of mature leaves is related with the sink demands of storage organs. After bud break the accumulated assimilate pools in needles and stem, mainly the bark, are mobilized and support carbon supply to new tissues.  相似文献   

4.
J.S. Tsay  W.L. Kuo  C.G. Kuo 《Phytochemistry》1983,22(7):1573-1576
The levels of free sugars, starch and enzymes involved in starch metabolism—sucrose synthetase, UDP and ADP glucose pyrophosphorylase, phosphorylase and starch synthetase—were assayed during seed development of three cultivars of mung bean (Vigna radiata). Free sugars and starch increased with increasing seed weight. Changes in levels of sucrose synthetase, UDP- and ADP-glucose pyrophosphorylases, and phosphorylase were paralleled by changes in starch accumulation. After the maximum activity levels of these enzymes had been reached, maximum activities of soluble starch synthetase and starch granule-bound starch synthetase occurred. There were high activities of sucrose synthetase and phosphorylase at maximum rates of starch accumulation. Thus, starch could be synthesized via the ADP glucose pathway in mung bean seeds. However, phosphorylase may account for the starch accumulation in the early stages of mung bean seed development.  相似文献   

5.
Stele and cortex were separated from the region 6–24 mm from the tip of roots of seedlings of Pisum sativum L. that had been grown in the dark for 5 days. The activities of sucrose synthetase (E.C. 2.4.1.13) and sucrose phosphate synthetase (E.C. 2.4.1.14) in extracts of stele were 34 and 5·9 nmol product formed/min per mg protein, respectively. The corresponding figures for extracts of cortex were 17 and 5·2. Appreciable labelling of sucrose occurred when samples of either stele or cortex were incubated in [14C]glucose for 90 min. The labelling of sucrose after incubation of the tissues for 45 min in [14C]glucose followed by 45 min in glucose suggested some turnover of sucrose in the cortex but none in the stele. These results are discussed in relation to the control of sucrose metabolism in the root.  相似文献   

6.
R.R. Walker  J.S. Hawker 《Phytochemistry》1976,15(12):1881-1884
During a 9 day period after anthesis the concentration of reducing sugars showed a 6-fold increase in fruits of Citrullus lanatus, and a 2-fold increase in those of Capsicum annuum. These increases were associated with acid invertase, the specific activity of which was high in ovaries at anthesis and which increased 5-fold in watermelon and 1.5-fold in pepper during the same period. Sucrose synthase apparently plays only a minor role in sucrose hydrolysis. Changes in sugar concentrations and both acid invertase and sucrose synthase activities were similar in fruits developed both after pollination or hormone (NAA) treatment of ovaries. In non-pollinated ovaries of watermelon there was also an increase in invertase activity up to 6 days after anthesis which paralleled the increase in activity in seeded and parthenocarpic fruits. However, there was no increase in either reducing sugars or sucrose, indicating that sucrose is not imported into non-pollinated ovaries. Utilisation of reserve starch may help prolong the life of non-pollinated ovaries for up to one week after anthesis.  相似文献   

7.
The absolute activities of sucrose-UDP glucosyltransferase, glucose-6-phosphate ketoisomerase and soluble and bound ADPG-starch glucosyltransferase have been studied in normal and Opaque-2 maize endosperms during development. In general, the activities of these enzymes except sucrose-UDP glucosyltransferase were higher up to 20 days post-pollination and lower at the 30 day stage in Opaque-2 than in normal maize endosperms. However, sucrose-UDP glucosyltransferase activity was higher in normal maize endosperm up to the 20 day stage while it was lower at subsequent stages than in Opaque-2. It is suggested that the lower level of these enzymes, except sucrose-UDP glucosyltransferase, might be responsible for the reduced accumulation of starch in Opaque-2 endosperm during later stages of endosperm development.  相似文献   

8.
Several enzymes of non–photosynthetic sugar phosphate and starch metabolism were measured in gradient–purified chloroplasts from normal rye leaves ( Secale cereale L. cv. Halo) grown at 22°C and in the non-photosynthetic plastids isolated from 70S ribosome-deficient rye leaves grown at a non–permissive elevated temperature of 32°C. Activities of the enzymes phosphoglycerate kinase (EC 2.7.2.3), hexokinase (EC 2.7.1.1), phosphoglucose isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate de-hydrogenase (EC 1.1.1.46), ADPglucose pyrophosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21), and phosphorylase (EC 2.4.1.1) were present in ribosome-deficient plastids from 32°C-grown leaves indicating a cytoplasmic origin of the plastid-specific forms of these enzymes. While the photosynthetic marker enzyme NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) was considerably diminished, both the specific activities and the total activities per leaf of the plastid-specific forms of hexokinase, phosphoglucose isomerase and phosphoglucomutase were markedly increased in the ribosome–deficient plastids, relative to normal chloroplasts. The results demonstrate that after elimination of functional protein synthesis in the chloroplasts the supply of chloroplast–specific enzymes by the cytoplasm is not generally suppressed as observed for many enzymes and proteins involved in photosynthesis, but may even be increased in accord with changed metabolic demands.  相似文献   

9.
Changes in the contents of starch, protein, DNA, RNA, total phosphorus, acid soluble phosphorus and inorganic phosphorus, and in the activities of some enzymes of carbohydrate, amino acid, nucleic acid and phosphate metabolism were studied during the germination of Cuscuta campestris seeds. The results are expressed on per seed basis.
Starch content in Cuscuta seeds showed a steady decline with most of it depleted by the end of the eighth day of germination. Protein content increased with germination up to 48 h and then decreased. RNA and DNA contents increased to a maximal level on the fourth day of germination and then decreased. Total phosphorus in the seeds remained almost unchanged during the period of study. Both trichloroacetic acid soluble and inorganic phosphorus increased until the third day and then decreased. Phytin was rapidly hydrolyzed with little being detectable by the seventh day of germination. Glucose-6-phosphate dehydrogenase increased with germination, while fructose bisphosphate aldolase which is indispensable for glycolysis, decreased with germination. Ribonuclease and deoxyribonuclease increased till the third and fourth day, respectively, and then decreased. Aspartate and alanine aminotransferases showed a maximum on the second day and then decreased. Activities of alkaline fructose-1,6-bisphosphatase and phytase were absent in the dry seeds and appeared only on the second day of germination. Both α- and β-amylase activities were present in the dry seed.  相似文献   

10.
Leaves of Vitis vinifera L., cv. Cabernet Sauvignon contained 2.0 mg of starch per g fresh weight, whereas young green berries and maturing grape berries contained less than 0.03 mg of starch, despite the presence of abundant substrates (reducing sugars and sucrose) in berries for starch synthesis. the activities of several enzymes likely to be involved in starch synthesis were determined in extracts of berries and leaves. Fractionation procedures resulted in final recoverable ADPglucose-starch glucosyltransferase activity which was 2–3 times the activity measured in crude extracts of leaves. Compared to leaves, berries contained low activities of ADPglucose-starch glucosyltransferase and ADPglucose pyrophosphorylase. These enzymes increased only 2- to 3-fold from young to maturing berries. ADPglucose-starch glucosyltransferase activity in the absence of added primer was found in leaf extracts but not in berry extracts. The activities of UDP-glucose pyrophosphorylase, phosphorylase and amylase were comparable in both leaves and berries and increased 6- to 7-fold during berry development. The low activities of ADPglucose-starch glucosyltransferase and ADPglucose pyrophosphorylase probably account for the paucity of starch in grape berries.  相似文献   

11.
12.
13.
Mesophyll and bundle sheath cells of maize leaves were separated and enzymes of starch and sucrose metabolism assayed. The starch content and activities of ADPglucose (ADPG) starch synthetase and phosphorylase expressed both on a chlorophyll and a protein basis were much lower in mesophyll cells compared to bundle sheath preparations. Exposure of the leaves to continuous illumination for 2·5 days caused the starch content of mesophyll cells to rise greatly and led to considerable increases in ADPG starch synthetase and phosphorylase activity. In glasshouse grown leaves the bulk of invertase, sucrose phosphate synthetase, sucrose phosphatase, UDPglucose pyrophosphorylase and amylase was situated in the mesophyll layer. Sucrose synthetase, ADPG starch synthetase and phosphorylase were largely confined to the bundle sheath. No enzyme could be completely assigned to one particular cell layer. Upon continuous illumination both ADPG starch synthetase and phosphorylase increased in the mesophyll bythe same relative amount. The mesophyll is likely to be a major site for sucrose synthesis in maize leaves.  相似文献   

14.
Florida's red tide organism, Gymnodinium breve, utilized exogenous glucose in the light for the synthesis of cellular components. Glucose was not taken up in the dark. Kinetic parameters for glucose uptake include a KFD of 11 μM and a Vmax of 1 × 10?10 mol of glucose taken up/mg cellular protein/hr. Glucose uptake was competitively inhibited by phloridzin (Ki = 40 μM), mannose (Ki = 12O μM), and 2-deoxy-d-glucose (Ki = 190 μM) and non-competitively inhibited by galactose (Ki = 125 μM). Kinetics and inhibition of glucose uptake are consistent with a facilitated diffusion transport system.  相似文献   

15.
16.
Previous studies have shown that intradermally (ID) injected Brugia pahangi L3s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24 h in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3 DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early Brugia malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils.  相似文献   

17.
18.
19.
Gontijo, N. F., Almeida-Silva, S., Costa, F. F., Mares-Guia, M. L., Williams, P., and Melo, M. N. 1998.Lutzomyia longipalpis:pH in the gut, digestive glycosidases, and some speculations uponLeishmaniadevelopment.Experimental Parasitology90, 212–219. Screening for digestive glycosidases in different parts of the gut and associated organs ofLutzomyia longipalpisis reported. Searches for the enzymes were made in blood-fed and non-blood-fed females and the enzymes were characterized as soluble or membrane-bound molecules. A total of four different activities were detected, corresponding to the following specificities: an α-glucosidase, anN-acetyl-β-d-glucosaminidase, anN-acetyl-β-d-galactosaminidase, and an α-l-fucosidase. Their possible role and importance forLeishmaniadevelopment are discussed and the α-glucosidase enzyme was partially characterized. The pH inside the gut of non-blood-fed phlebotomines was measured with pH indicator dyes. The pH ranges obtained for crop, midgut, and hindgut were, respectively, higher than pH 6, pH 6, and lower than pH 6. A hypothesis concerning these data andLeishmaniadevelopment is proposed.  相似文献   

20.
Structurally composed of the glucose homopolymers amylose and amylopectin, starch is the main storage carbohydrate in vascular plants, and is synthesized in the plastids of both photosynthetic and non-photosynthetic cells. Its abundance as a naturally occurring organic compound is surpassed only by cellulose, and represents both a cornerstone for human and animal nutrition and a feedstock for many non-food industrial applications including production of adhesives, biodegradable materials, and first-generation bioethanol. This review provides an update on the different proposed pathways of starch biosynthesis occurring in both autotrophic and heterotrophic organs, and provides emerging information about the networks regulating them and their interactions with the environment. Special emphasis is given to recent findings showing that volatile compounds emitted by microorganisms promote both growth and the accumulation of exceptionally high levels of starch in mono- and dicotyledonous plants. We also review how plant biotechnologists have attempted to use basic knowledge on starch metabolism for the rational design of genetic engineering traits aimed at increasing starch in annual crop species. Finally we present some potential biotechnological strategies for enhancing starch content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号